dr. Massimo Mastrangeli

Assistant Professor
Electronic Components, Technology and Materials (ECTM), Department of Microelectronics

Expertise: Organ-on-chip technology, micro/nanosystems assembly, capillary manipulation, solid-liquid interfaces

Themes: Health and Wellbeing

Biography

As Assistant Professor at TU Delft's ECTM group, Massimo "Max" Mastrangeli is investigating new solutions for the development of Si/polymer-based organ-on-chip platforms, and alternative processes for the fabrication of nanoparticle-based devices and systems.

Massimo received the B.Sc. and M.Sc. degrees cum laude in Electronic Engineering from Universitá di Pisa, (Pisa, Italy) in 2003 and 2005, respectively, and the Ph.D. degree in Materials Engineering from University of Leuven (Leuven, Belgium) in 2010. His doctoral dissertation pioneered microsystem integration by fluidic self-assembly.

From 2011 to 2013 Massimo was Post-Doctoral Scientist with the Distributed Intelligent Systems and Algorithms Laboratory (DISAL) and the Microsystems Laboratory (LMIS1) of École Polytechnique Fédérale de Lausanne (EPFL, Lausanne, Switzerland), investigating the convergence of micro/nanosystems and distributed robotics into smart minimal agents.

In 2014, Massimo joined the Department of Bio, Electro And Mechanical Systems (BEAMS) of Université Libre de Bruxelles (ULB) as Senior Scientist, investigating surface tension-based micromanipulation and templated nanoparticle assembly for plasmonic applications.

As Research Associate at the Physical Intelligence Department of the Max Planck Institute for Intelligent Systems and Associated Member of the Max Planck ETH Center for Learning Systems (Stuttgart, Germany) between 2015 and 2017, Massimo focused his research on micro-robotics, bio-inspired adhesion, and programmable self-organization.

Massimo is currently also Lecturer at the EDMI Doctoral School of École Polytechnique Fédérale de Lausanne.

CQM Classical and Quantum Mechanics

"Classical and Quantum Mechanics" (EE1P11) teaches the basic elements of physics that are required to become an electrical engineer.

EE2L11 EPO-3: Design a Chip

Structural hierarchical design of a VLSI chip, implemented using Sea-of-Gates

EE3345TU Introduction to Physics of Electronics

A brief overview of introductory material in electromagnetics (EM) and quantum mechanics (QM), which forms the basis for later courses in the Minor of Physics of Electronics.

EE3365TU Basics of Microfabrication

EE3375TU Basics of Solid-State Physics

ET4127 Themes in Biomedical Electronics

BioMEMS, biosensors, bioelectronics, ultrasound, microfluidics, wavefield imaging in monitoring, diagnosis and treatment

ET4391 Advanced microelectronics packaging

Basics and state-of-the-art of semiconductor packaging

Developing immunocompetent human organ-on-a-chip models with integrated lymph drainage for drug discovery and testing

Developing immunocompetent human organ-on-a-chip models with integrated lymph drainage for drug discovery and testing.

Moore4Medical

Introduce open technology platforms for the development of electronic medical devices.

A Brain-on-Chip Platform for Focused Ultrasonic Stimulation

We intend to develop an innovative brain-on-chip platform to decode the mechanisms underlying ultrasonic neu-romodulation.

Netherlands Organ-on-Chip Initiative

To develop new microphysiological platforms to better predict the effect of medicines, based on a combination of human stem cells and microtechnology.

Health.E Lighthouse Support Initiative

Projects history

Organ-on-Chip in Development

Developing a European roadmap for the development of organ-on-chip technology

  1. Recording neuronal activity on chip with segmented 3D microelectrode arrays
    Nele Revyn; Michel. H. Y. Hu; Jean-Philippe M. S. Frimat; B. de Wagenaar; Arn M. J. M. van den Maagdenberg; Pasqualina M. Sarro; Massimo Mastrangeli;
    In 35th Intl. Conf. on Micro Electro Mechanical Systems (MEMS 2022),
    January 9-13 2022.

  2. Highly-Conformal Sputtered Through-Silicon Vias with Sharp Superconducting Transition
    J. A. Alfaro-Barrantes; M. Mastrangeli; D. J. Thoen; S. Visser; J. Bueno; J. J. A. Baselmans; P. M. Sarro;
    Journal of Microelectromechanical Systems,
    Volume 30, Issue 2, pp. 253-261, 2021. DOI: 10.1109/JMEMS.2021.3049822

  3. Technology Development for MEMS: A Tutorial
    P. J. French, G. J. Krijnen, S. Vollebregt; M. Mastrangeli;
    IEEE Sensors Journal,
    2021. DOI: doi: 10.1109/JSEN.2021.3104715
    Abstract: ... Silicon sensors date back to before 1960 with early Hall and piezoresistive devices. These used simple processing that was part of the early integrated circuit (IC) industry. As the IC industry developed, silicon sensors could benefit from the technological advances. As silicon sensors advanced, there came the need for new technologies specifically for microsystems. This led to a range of 3-D structures using micromachining and enabled the development of both sensors and actuators. The integration of sensors with electronics on a single chip also presented new challenges to ensure that both sensor and electronics would function correctly at the end of the processing. In recent years many new technologies and new materials were introduced to enhance the functionality of microsystems. Some sensors are still based on silicon, but others introduce new materials such as carbon nanotubes and graphene. Technologies that have been used in other applications for many years are now integral part of the microsystem technology portfolio. These include screen printing and inkjet printing. Moving more into the third dimension, 3-D printing presents many new opportunities to fabricate novel structures on a silicon substrate. This tutorial focuses on the additional technologies which have been developed to supplement standard IC processes to create MEMS structures.

  4. Organs-on-chip: The way forward
    M. Mastrangeli; J. van den Eijnden-van Raaij;
    Stem Cell Reports,
    Volume 16, pp. 2037-2043, July 2021. DOI: https://doi.org/10.1016/j.stemcr.2021.06.015

  5. Technology Development for MEMS: A Tutorial
    Paddy J French; Gijs JM Krijnen; Sten Vollebregt; Massimo Mastrangeli;
    IEEE Sensors Journal,
    2021.
    document

  6. Dual-gate FET-based charge sensor enhanced by in-situ electrode decoration in a MEMS organs-on-chip platform
    H. Aydogmus; H. J. van Ginkel; A.-D. Galiti; M. Hu; J.-P. Frimat; A. van den Maagdenberg; G.Q. Zhang; M. Mastrangeli; P. M. Sarro;
    In 21st Int. Conf. on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS 2021),
    online, 20-25 June, 2021.

  7. Recording 3D neuronal activity on chip with segmented 3D microelectrode arrays
    N. Revyn; M. H. Y. Hu; J.-P. Frimat; A. M. J. M. van den Maagdenberg; P. M. Sarro; M. Mastrangeli;
    In EUROoCS Conference 2021,
    online, 1-2 July, 2021.

  8. An engineered heart tissue platform with integrated pacing microelectrodes
    M. Dostanic; L. Windt; J. Stein; B. van Meer; A. Diakou; C. L. Mummery; P. M. Sarro; M. Mastrangeli;
    In EUROoCS Conference 2021,
    online, 1-2 July, 2021.

  9. ForceTracker: A versatile tool for contractile force assessment in 3D organ-on-chip platforms
    J. M. Rivera-Arbelaez; M. Dostanic; J. M. Stein; A. van den Berg ; L. I. Segerink ; C. L. Mummery; P. M. Sarro; M. Mastrangeli; M. C. Ribeiro; R. Passier;
    In EUROoCS Conference 2021,
    online, 1-2 July, 2021.

  10. FET-based integrated charge sensing in a MEM organ-on-chip platform
    H. Aydogmus; H. J. van Ginkel; A.-D. Galiti; M. H. Y. Hu; J.-P. Frimat; A. M. J. M. van den Maagdenberg; G.Q. Zhang; M. Mastrangeli; P. M. Sarro;
    In EUROoCS Conference 2021,
    online, 1-2 July, 2021.

  11. Microelectronmechanical organs-on-chip
    Massimo Mastrangeli; Hande Aydogmus; Milica Dostanic; Paul Motreuil-Ragot; Nele Revyn; Bjorn de Wagenaar; Ronald Dekker; Pasqualina M. Sarro;
    In 21st Int. Conf. on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS 2021),
    online, 20-25 June, 2021.

  12. Self-aligned micro-optic integrated photonic platform
    A. Jovic; N. Sanchez Losilla; J. Sancho Durá; K. Zinoviev; J. L. Rubio Guivernau; E. Margallo-Balbás; M. Mastrangeli; G. Pandraud; P. M. Sarro;
    Applied Optics,
    Volume 59, Issue 1, pp. 180-189, 2020. DOI: https://doi.org/10.1364/AO.59.000180

  13. Controlling the pinning time of a receding contact line under forced wetting conditions
    J-C. Fernández-Toledano; C. Rigaut; M. Mastrangeli; J. De Coninck;
    Journal of Colloid and Interface Science,
    Volume 565, pp. 449-457, 2020. DOI: 10.1016/j.jcis.2020.01.054

  14. Bottom-up assembly of micro/nanostructures
    M. Mastrangeli; M. Perego;
    Advanced Materials Interfaces,
    Volume 7, Issue 5, pp. 2000182, 2020. DOI: 10.1002/admi.202000182

  15. Statistical reprogramming of macroscopic self-assembly with dynamic boundaries
    U. Culha; Z. S. Davidson; M. Mastrangeli; M. Sitti;
    Proceedings of the National Academy of Sciences of the USA,
    Volume 117, Issue 21, pp. 11306-11313, 2020. DOI: 10.1073/pnas.2001272117

  16. Three-dimensional self-assembly using dipolar interaction
    L. Abelmann; T. A.G. Hageman; P. A. Loethman; M. Mastrangeli; M. Elwenspoek;
    Science Advances,
    Volume 6, Issue 19, pp. eaba2007, 2020. DOI: 10.1126/sciadv.aba2007

  17. Superconducting High-Aspect Ratio Through-Silicon Vias with DC-Sputtered Al for Quantum 3D integration
    J. A. Alfaro-Barrantes; M. Mastrangeli; D. J. Thoen; S. Visser; J. Bueno; J. J. A. Baselmans; P. M. Sarro;
    IEEE Electron Device Letters,
    Volume 41, Issue 7, pp. 1114-1117, 2020. DOI: 10.1109/LED.2020.2994862

  18. A miniaturized EHT platform for accurate measurements of tissue contractile properties
    M. Dostanic; L. M. Windt; J. M. Stein; B. J. van Meer; M. Bellin; V. Orlova; M. Mastrangeli; C. L. Mummery; P. M. Sarro;
    Journal of Microelectromechanical Systems,
    Volume 29, Issue 5, pp. 881-887, July 2020. DOI: 10.1109/JMEMS.2020.3011196

  19. Superconducting High-Aspect Ratio Through-Silicon Vias With DC-Sputtered Al for Quantum 3D Integration
    J.A. Alfaro-Barrantes; M. Mastrangeli; D.J. Thoen; S. Visser; J. Bueno; J.J.A. Baselmans; P.M. Sarro;
    IEEE Electron Device Letters,
    Volume 41, Issue 7, pp. 1114-1117, July 2020. DOI: 10.1109/LED.2020.2994862

  20. Fabrication of Al-based superconducting high-aspect ratio TSVs for quantum 3D integration
    J. A. Alfaro-Barrantes; M. Mastrangeli; D. J. Thoen; J. Bueno; J. J. A. Baselmans; P. M. Sarro;
    In IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS 2020),
    2020. DOI: 10.1109/MEMS46641.2020.9056165

  21. Enabling Actuation and Sensing in Organs-On-Chip Using Electroactive Polymers
    P. Motreuil-Ragot; A. Hunt; D. Kasi; B. Brajon; A. M. J. M. van den Maagdenberg; V. Orlova; M. Mastrangeli; P. M. Sarro;
    In IEEE 3rd International Conference on Soft Robotics (RoboSoft 2020),
    2020. DOI: 10.1109/RoboSoft48309.2020.9115977

  22. FET-based integrated charge sensor for organ-on-chip applications
    H. Aydogmus; M. Dostanic; M. Jahangiri; R. Sinha; W. F. Quiros-Solano; M. Mastrangeli; P. M. Sarro;
    In IEEE Sensors 2020,
    2020. DOI: 10.1109/SENSORS47125.2020.9278692

  23. A 3D microelectrode array to record neural activity at different tissue depths
    T. de Rijk; M. Hu; J.-P. Frimat; A. M. J. M. van den Maagdenberg; P. M. Sarro; M. Mastrangeli;
    In EUROoCS Conference 2020,
    July 2020.

  24. Miniaturized engineered heart tissues from human induced pluripotent cell-derived co-culture
    L. Windt; M. Dostanic; J. Stein; V. Meraviglia; G. Campostrini; M. Bellin; V. Orlova; M. Mastrangeli; P. M. Sarro; B. van Meer; C. Mummery;
    In EUROoCS Conference 2020,
    2020.

  25. Superconducting High-Aspect Ratio TSVs with DC-Sputtered Aluminum for Quantum 3D integration
    J.A. Alfaro-Barrantes; D.J. Thoen; M. Mastrangeli; J. Bueno; A. Endo; J.J.A. Baselmans; P.M. Sarro Superconducting High-Aspect Ratio TSVs with DC-Sputtered Aluminum for Quantum 3D integration. IEEE 33rd Int. Conf. Micro Electro Mech. Syst.;
    In IEEE 33rd Int. Conf. Micro Electro Mech. Syst.,
    2020.

  26. FET-based charge sensor for organs-on-chip with in-situ electrode decoration
    H. Aydogmus; H. J. van Ginkel; M. Mastrangeli; GuoQi Zhang; P.M. Sarro;
    In International MicroNanoConference,
    December 2020.

  27. Microelectromechanical organs-on-chip
    M. Mastrangeli;
    Keynote lecture, presented at 4th Annual hDMT Consortium Meeting, Rotterdam (NL), 14 February 2020.

  28. Microengineering organs-on-chip
    M. Mastrangeli;
    Invited talk, presented at the Workshop on Applications of Micro-Nanorobotics, IEEE International Conference on Robotics and Automation (ICRA 2020), 3 June 2020.
    document

  29. Self-assembly across scales and interfaces
    M. Mastrangeli;
    Seminar, presented at the Department of Micro and Nanosystems, KTH Royal Institute of Technology, 3 April 2020.

  30. Unmet needs, key challenges and market perspectives in organs-on-chip
    M. Mastrangeli;
    Presented at ORCHID final meeting, Leiden (NL), 23 September 2020.

  31. A thermodynamic description of turbulence as a source of stochastic kinetic energy for 3D self-assembly
    P. A. Loethman; T. A. Hageman; M. C. Elwenspoek; G. J. M. Krijnen; M. Mastrangeli; A. Manz; L. Abelmann;
    Advanced Materials Interfaces,
    Volume 7, Issue 5, pp. 1900963, 2019. DOI: 10.1002/admi.201900963

  32. Adhesive elastocapillary force on a cantilever beam
    T. Gilet; S. M. Gernay; L. Aquilante; M. Mastrangeli; P. Lambert;
    Soft Matter,
    Volume 15, pp. 3999-4007, 2019. DOI: 10.1039/C9SM00217K

  33. Building Blocks for a European Organ-on-Chip Roadmap
    M. Mastrangeli; S. Millet; C. Mummery; P. Loskill; D. Braeken; W. Eberle; M. Cipriano; L. Fernandez; M. Graef; X. Gidrol; N. Picollet-D'Hahan; B. van Meer; I. Ochoa; M. Schutte; J. van den Eijnden-van Raaij;
    ALTEX - Alternatives to Animal Experimentation,
    Volume 36, Issue 3, pp. 481-492, 2019. DOI: 10.14573/altex.1905221

  34. Self-folding using capillary forces
    K. S. Kwok; Q. Huang; M. Mastrangeli; D. H. Gracias;
    Advanced Materials Interfaces,
    Volume 7, Issue 5, pp. 1901677, 2019. DOI: 10.1002/admi.201901677

  35. Organ-on-Chip in Development: Towards a roadmap for organs-on-chip
    M. Mastrangeli; S. Millet; the ORCHID partners; J. van den Eijnden-van Raaij;
    ALTEX-Alternatives to Animal Experimentation,
    Volume 36, Issue 4, pp. 650-668, 2019. DOI: 10.14573/altex.1908271

  36. Microscale surface tension and its applications
    P. Lambert; M. Mastrangeli (Ed.);
    MDPI, , 2019. DOI: https://doi.org/10.3390/mi10080526

  37. Enabling actuation and sensing in organs-on-chip using electroactive polymers
    P. Motreuil-Ragot; A. Hunt; D. Kasi; B. Brajon; A. van den Maagdenberg; V. Orlova; M. Mastrangeli; P. M. Sarro;
    In International MicroNanoConference,
    Utrecht (NL), December 10-11, 2019.

  38. A miniaturized EHT platform for contractile tissue measurements
    M. Dostanic; L. Windt; J. Stein; B. van Meer; M. Mastrangeli; C. Mummery; P. M. Sarro;
    In International MicroNanoConference,
    Utrecht (NL), December 10-11, 2019.

  39. Micro- and nanosystems assembly via fluid joints (Plenary talk)
    M. Mastrangeli;
    In 4th Int. Conf. on Manipulation, Automation and Robotics at Small Scales (MARSS 2019),
    4 July 2019.

  40. Sensor applications for organ-on-chip platforms
    H. Aydogmus; M. Dostanic; M. Jahangiri; R. Sinha; W. F. Quiros-Solano; M. Mastrangeli; P. M. Sarro;
    In International MicroNanoConference,
    Utrecht (NL), December 10-11, 2019.

  41. Microengineering organs-on-chip
    M. Mastrangeli;
    Seminar, presented at Universita' di Roma - Tor Vergata, Roma (IT), December 20, 2019.

  42. Microengineered organs-on-chip
    H. Aydogmus; M. Dostanic; P. Motreuil-Ragot; M. Mastrangeli; P. M. Sarro;
    Poster, presented at QBio Symposium, Utrecht (NL), October 29, 2019.

  43. Self-assembly by fluidics and by shaking
    M. Mastrangeli;
    Seminar, presented at Palo Alto Research Center (PARC), Palo Alto (CA), July 31, 2019.

  44. Micro- and nanosystems assembly via fluid joints
    M. Mastrangeli;
    Seminar, presented at Stanford University, Palo Alto (CA), August 12, 2019.

  45. Microengineering organs-on-chip
    M. Mastrangeli;
    Invited talk, presented at QBio Symposium, Utrecht (NL), October 29, 2019.

  46. Single nanoparticle printing
    M. Mastrangeli;
    Seminar, presented at Palo Alto Research Center (PARC), Palo Alto (CA), August 28, 2019.

  47. Organs- (and other pretty cool stuff) on-chip
    M. Mastrangeli;
    Seminar, presented at the Department of Nano Opto-Mechatronic Instruments (NOMI) of TNO, June 6 2019.

  48. Kinetics of orbitally shaken particles constrained to two dimensions
    D. Ipparthi; T. A. G. Hageman; N. Cambier; M. Sitti; M. Dorigo; L. Abelmann; M. Mastrangeli;
    Physical Review E,
    Volume 98, pp. 042137, 2018. DOI: 10.1103/PhysRevE.98.042137

  49. Vacuum assisted liquified metal (VALM) TSV filling method with superconductive material
    J. A. Alfaro; P. M. Sberna; C. Silvestri; M. Mastrangeli; R. Ishihara; P. M. Sarro;
    In IEEE Micro Electro Mechanical Systems (MEMS),
    Belfast, Northern Ireland, UK, pp. 547-550, Jan. 21-25 2018. DOI: 10.1109/MEMSYS.2018.8346611
    document

  50. Self-assembly: Insights from the macroscale
    M. Mastrangeli;
    In 3rd Int. Conf. on Manipulation, Automation and Robotics at Small Scales (MARSS2018),
    2018.

  51. Vacuum Assisted Liquified Metal (VALM) TSV Filling Method With Superconductive Material
    J.A. Alfaro; P.M. Sberna; C. Silvestri; M. Mastrangeli; R. Ishihara; P.M. Sarro;
    In 31th IEEE International Conference on Micro Electro Mechanical Systems (MEMS),
    2018. DOI: 10.1109/MEMSYS.2018.8346611

  52. Small-scale soft robots with multimodal locomotion
    M. Mastrangeli;
    presented at Digital Health: Robotic Assistance for a better life (ETV Symposium), Delft (NL), 6 June 2018.

  53. Nanoscale topography controls the capillary assembly of nanoparticles
    M. Mastrangeli;
    presented at the Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, Pozzuoli (IT), October 26, 2018.

  54. Technological challenges and unmet needs for organs-on-chip: Expert opinions
    M. Mastrangeli;
    presented at ORCHID (Organs-on-CHIp in Development) Vision Workshop, Stuttgart (DE), May 23, 2018.

  55. Nanoscale topography controls the capillary assembly of nanoparticles
    M. Mastrangeli;
    presented at Holst Centre, Eindhoven (NL), February 16, 2018.

  56. On capillary nanoparticle assembly and soft multimodal robots
    M. Mastrangeli;
    presented at Aalto University, Espoo (FI), August 10, 2018.

  57. Nanoscale topography controls the capillary assembly of nanoparticles
    M. Mastrangeli;
    presented at AMOLF (Amsterdam, NL), November 2017.

  58. Soft miniature robots with multimodal locomotion
    M. Mastrangeli;
    presented at the microMAST General Meeting, 2017.

BibTeX support

Last updated: 24 Sep 2021