Autonomous sensor systems
Contact: Kofi Makinwa

In IoT applications, sensors operate in a network. Limited power resources favor power-efficient communications. Sensors can communicate only with neighboring nodes, creating a dynamic and complex network that relies on self-organizing and self-healing capabilities.
In biomedical applications, the sensors need to be miniaturized and packaged to be bio-compatible or implantable, as e.g. with smart (multi-modal) catheters or electroceuticals, which combine sensing, local data processing, and actuation.
In other applications (autonomous driving or flying enabled by a variety of radar sensors distributed over many nodes), the focus is on robustness and reliability in view of a very dynamic network, and optimal fusion of different sources of information. With TUE we collaborate on a program to realize a low-frequency radio telescope in space using a swarm of nano-satellites (OLFAR). Emerging technologies such as neuromorphic computing and structured data science are expected to play an important role in future.
Projects under this theme
GreenEdge
Physics inspired inference, classification and prediction in networked systems
Reliable Powerdown for Industrial Drives (R-PODID)
Moonshot
Science and technology for Lunar surface missions
Signal processing for environment-aware radar
In future, cars will exploit multiple radars towards autonomous driving. Before this becomes a reality, several challenges will have to be solved.
AGRARSENSE
Odour Based Selective Recognition of Veterinary Diseases
Delft Sensor AI Lab
Bringing AI to sensor networks
Cooperative Relative Navigation of Multi-agent Systems
Develop algorithms for multi-target position, time and orientation tracking in a mobile network of multi-agent systems
Next-generation chip assembly processes
Developing technology for ultra-high throughput and sustainable chip assembly processes.
Automotive Intelligence for Connected Shared Mobility
Architectures for embedded intelligence and functional virtualization for connected and shared mobility using trustworthy AI
Distributed Artificial Intelligent Systems
Running existing algorithms on vastly distributed edge devices
Compact modelling of high-tech systems for health management and optimization along the supply chain
Challenging environments tolerant smart systems for IoT
In-vehicle health monitoring
Intelligent Reliability 4.0
Airborne data collection on resilient system architectures
Develop algorithms to realize efficient, robust, cost-effective perception and control for autonomous navigation of drones
Graphene Flagship core 3: Transferless graphene in sensing applications
NewControl
Virtual platforms for perception and control in highly automated vehicles, based on safety by design
Coded-Radar for Interference Suppression in Super-Dense Environments
CRUISE will address the challenges regarding spectrum crowding and ensures proper radar signal detection, accurate ranging, Doppler and azimuth measurements, and object classification in a highly-occupied frequency spectrum
History
Internet of Things (IoT) security through machine learning and data sharing
High Performance Vehicle Computer and Communication System for Autonomous Driving
Solid State Lighting reliability for automotive application
PIPP OLFAR: Breakthrough technologies for Interferometry in Space
Combine multiple satellites into one single scientific instrument: a radio telescope in space
Programmable Systems for Intelligence in Automobiles
(a) fail-operational sensor-fusion framework, (b) dependable embedded E/E architectures, (c) safety compliant integration of AI approaches for object recognition, scene understanding, and decision making
Monolithically integrated SiC sun sensor for Space
Task-cognizant sparse sensing for inference
Low-cost sparse sensing designed for specific tasks
Low-frequency distributed radio telescope in space
Below 15 MHz, the ionosphere blocks EM signals from the sky. Therefore, can we design a radio telescope in space, using a swarm of inexpensive nano-satellites? Accurate localization and clock recovery is important.

News

The 2022 Marie Skłodowska-Curie Postdoctoral Fellowship Grant awarded to dr. Karen Dowling
The 2022 Marie Skłodowska-Curie Postdoctoral Fellowship Grant (€203K) Awarded to dr. Karen Dowling.Dr. Karen Dowling’s MSCA-PF was granted for her project titled “Precise X-Y-Z Readout with a micro-Magnetometer Inverted-pyramid Design (PYRAMID), ” in collaboration with Prof. dr. Kofi Mankinwa.
.jpg)
Charlotte Frenkel (EI group) receives Veni grant
The Veni grant is a funding instrument from the Talent Programme of the Dutch Research Council (NWO). It allows researchers who have recently obtained their PhD to conduct independent research and develop their ideas for a period of three years. The Veni grant amounts to a maximum of EUR 280,000. A total of 17 researchers from TU Delft received a Veni, including Charlotte Frenkel from our department. A fantastic achievement!