prof.dr. E. Charbon

Professor
Circuits and Systems (CAS), Department of Microelectronics

Expertise: VLSI design; quantum imaging sensors

Themes: Health and Wellbeing

Biography

Edoardo Charbon is a Professor in VLSI Design. He was in the CAS group from 1 Sep 2008 until 1 Jan 2016 when he started a new group on Advanced Quantum Architectures (AQUA).

He received the Diploma from ETH Z�rich in 1988, the M.S. from UCSD in 1991, and the Ph.D. from UC-Berkeley in 1995, all in Electrical Engineering. From 1995 to 2000, he was with Cadence Design Systems, where he was responsible for analog and mixed-signal design automation tools and the architect of the company�s initiative for electronic IP protection. In 2000, he joined Canesta Inc. as its Chief Architect, leading the development of wireless 3D CMOS image sensors. From November 2002 until August 2008, he has been a member of the Faculty of EPFL, working in the field of CMOS sensors, biophotonics, and ultra low-power wireless embedded systems. He has consulted for numerous organizations, including Texas Instruments, Hewlett-Packard, and the Carlyle Group.

He has published over 150 articles in technical journals and conference proceedings and two books, and he holds thirteen patents. His research interests include high-performance imaging, quantum integrated circuits, and design automation algorithms.

Dr. Charbon has served as Guest Editor of the Transactions on Computer-Aided Design of Integrated Circuits and Systems and the Journal of Solid-State Circuits and is currently the chair of technical committees in ESSCIRC, ICECS, and VLSI-SOC.

Projects history

A Single-Photon, Time-Resolved Image Sensor for Low-Light-Level Vision

The project aims for a CMOS photon-counting image sensor with high timing resolution

Non-Invasive High Resolution Near-Infrared Imaging for Hemodynamics Monitoring and Tumor Detection

Large high-resolution imaging sensor aimed at the diagnosis and treatment of cancer and functional imaging of the brain

Three-Dimensional CMOS Photon Counting for Medical Imaging and Cancer Diagnostics

SPAD technology for TOF-PET applications

Ultra-fast GSDIM super resolution microscopy using a SPAD-array camera

Visualization of nanoscopic cellular structures using nonswitchable standard fluorophores

Pico-second Silicon Photomultiplier-Electronics & Crystal Research

Ultra-fast photon detectors for medical imaging (PET)

Novel multimodal endoscopic probes for simultaneous PET/ultrasound imaging for image-guided interventions

Development of new, higher performance imaging techniques with multimodal capability for endoscopic procedures in diagnostic and therapeutic endoscopy and in surgical oncology.

Fully Networked, Digital Components for Photon-starved Biomedical Imaging Systems

Array of single-photon detectors arranged in a network of tens of dies for application in PET imaging

  1. A Scalable Cryo-CMOS Controller for the Wideband Frequency-Multiplexed Control of Spin Qubits and Transmons
    Van Dijk, Jeroen Petrus Gerardus; Patra, Bishnu; Subramanian, Sushil; Xue, Xiao; Samkharadze, Nodar; Corna, Andrea; Jeon, Charles; Sheikh, Farhana; Juarez-Hernandez, Esdras; Esparza, Brando Perez; Rampurawala, Huzaifa; Carlton, Brent R.; Ravikumar, Surej; Nieva, Carlos; Kim, Sungwon; Lee, Hyung-Jin; Sammak, Amir; Scappucci, Giordano; Veldhorst, Menno; Vandersypen, Lieven M. K.; Charbon, Edoardo; Pellerano, Stefano; Babaie, Masoud; Sebasti;
    IEEE Journal of Solid-State Circuits,
    Volume 55, Issue 11, pp. 2930-2946, 2020. DOI: 10.1109/JSSC.2020.3024678

  2. Designing a DDS-Based SoC for High-Fidelity Multi-Qubit Control
    van Dijk, Jeroen P. G.; Patra, Bishnu; Pellerano, Stefano; Charbon, Edoardo; Sebastiano, Fabio; Babaie, Masoud;
    IEEE Transactions on Circuits and Systems I: Regular Papers,
    Volume 67, Issue 12, pp. 5380-5393, 2020. DOI: 10.1109/TCSI.2020.3019413

  3. Characterization and Analysis of On-Chip Microwave Passive Components at Cryogenic Temperatures
    Patra, Bishnu; Mehrpoo, Mohammadreza; Ruffino, Andrea; Sebastiano, Fabio; Charbon, Edoardo; Babaie, Masoud;
    IEEE Journal of the Electron Devices Society,
    Volume 8, pp. 448-456, 2020. DOI: 10.1109/JEDS.2020.2986722

  4. A Wideband Low-Power Cryogenic CMOS Circulator for Quantum Applications
    Ruffino, Andrea; Peng, Yatao; Sebastiano, Fabio; Babaie, Masoud; Charbon, Edoardo;
    IEEE Journal of Solid-State Circuits,
    Volume 55, Issue 5, pp. 1224-1238, 2020. DOI: 10.1109/JSSC.2020.2978020

  5. Characterization and Modeling of Mismatch in Cryo-CMOS
    ’T Hart, P. A.; Babaie, M.; Charbon, Edoardo; Vladimirescu, Andrei; Sebastiano, Fabio;
    IEEE Journal of the Electron Devices Society,
    Volume 8, pp. 263-273, 2020. DOI: 10.1109/JEDS.2020.2976546

  6. A Cryogenic CMOS Parametric Amplifier
    Mehrpoo, Mohammadreza; Sebastiano, Fabio; Charbon, Edoardo; Babaie, Masoud;
    IEEE Solid-State Circuits Letters,
    Volume 3, pp. 5-8, 2020. DOI: 10.1109/LSSC.2019.2950186

  7. Cryogenic-CMOS for Quantum Computing
    Charbon, Edoardo; Sebastiano, Fabio; Babaie, Masoud; Vladimirescu, Andrei;
    Murmann, Boris; Hoefflinger, Bernd (Ed.);
    Cham: Springer International Publishing, , pp. 501--525, 2020. DOI: 10.1007/978-3-030-18338-7_26
    Abstract: ... In the 2010s quantum technologies have emerged as a compelling complement to classical technologies for a number of applications, including quantum sensing, metrology, imaging, communicationsCommunication, securitySecurity, and computing.

    document

  8. Cryo-CMOS Interfaces for Large-Scale Quantum Computers
    Sebastiano, F.; van Dijk, J.P.G.; Hart, P.A. ‘t; Patra, B.; van Staveren, J.; Xue, X.; Almudever, C.G.; Scappucci, G.; Veldhorst, M.; Vandersypen, L.M.K.; Vladimirescu, A.; Pellerano, S.; Babaie, M.; Charbon, E.;
    In 2020 IEEE International Electron Devices Meeting (IEDM),
    pp. 25.2.1-25.2.4, 2020. DOI: 10.1109/IEDM13553.2020.9372075

  9. A 10-to-12 GHz 5 mW Charge-Sampling PLL Achieving 50 fsec RMS Jitter, -258.9 dB FOM and -65 dBc Reference Spur
    Gong, Jiang; Sebastiano, Fabio; Charbon, Edoardo; Babaie, Masoud;
    In 2020 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 15-18, 2020. DOI: 10.1109/RFIC49505.2020.9218380

  10. Cryo-CMOS for Analog/Mixed-Signal Circuits and Systems
    van Dijk, Jeroen; Hart, Pascal't; Kiene, Gerd; Overwater, Ramon; Padalia, Pinakin; van Staveren, Job; Babaie, Masoud; Vladimirescu, Andrei; Charbon, Edoardo; Sebastiano, Fabio;
    In 2020 IEEE Custom Integrated Circuits Conference (CICC),
    pp. 1-8, 2020. DOI: 10.1109/CICC48029.2020.9075882

  11. 19.3 A 200dB FoM 4-to-5GHz Cryogenic Oscillator with an Automatic Common-Mode Resonance Calibration for Quantum Computing Applications
    Gong, Jiang; Chen, Yue; Sebastiano, Fabio; Charbon, Edoardo; Babaie, Masoud;
    In 2020 IEEE International Solid- State Circuits Conference - (ISSCC),
    pp. 308-310, 2020. DOI: 10.1109/ISSCC19947.2020.9062913

  12. 19.1 A Scalable Cryo-CMOS 2-to-20GHz Digitally Intensive Controller for 4×32 Frequency Multiplexed Spin Qubits/Transmons in 22nm FinFET Technology for Quantum Computers
    Patra, Bishnu; van Dijk, Jeroen P. G.; Subramanian, Sushil; Corna, Andrea; Xue, Xiao; Jeon, Charles; Sheikh, Farhana; Juarez-Hernandez, Esdras; Esparza, Brando Perez; Rampurawala, Huzaifa; Carlton, Brent; Samkharadze, Nodar; Ravikumar, Surej; Nieva, Carlos; Kim, Sungwon; Lee, Hyung-Jin; Sammak, Amir; Scappucci, Giordano; Veldhorst, Menno; Vandersypen, Lieven M. K.; Babaie, Masoud; Sebastiano, Fabio; Charbon, Edoardo; Pellerano, Stefano;
    In 2020 IEEE International Solid- State Circuits Conference - (ISSCC),
    pp. 304-306, 2020. DOI: 10.1109/ISSCC19947.2020.9063109

  13. Impact of Classical Control Electronics on Qubit Fidelity
    van Dijk, Jeroen PG; Kawakami, Erika; Schouten, Raymond N; Veldhorst, Menno; Vandersypen, Lieven MK; Babaie, Masoud; Charbon, Edoardo; Sebastiano, Fabio;
    Physical Review Applied,
    Volume 12, Issue 4, pp. 044054, 2019.

  14. Benefits and challenges of designing cryogenic CMOS RF circuits for quantum computers
    Mehrpoo, M; Patra, B; Gong, J; van Dijk, JPG; Homulle, H; Kiene, G; Vladimirescu, A; Sebastiano, F; Charbon, E; Babaie, M; others;
    In 2019 IEEE International Symposium on Circuits and Systems (ISCAS),
    IEEE, pp. 1--5, 2019.

  15. SPINE (SPIN Emulator)-A Quantum-Electronics Interface Simulator
    van Dijk, Jeroen; Vladimirescu, Andrei; Babaie, Masoud; Charbon, Edoardo; Sebastiano, Fabio;
    In 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI),
    IEEE, pp. 23--28, 2019.

  16. Voltage References for the Ultra-Wide Temperature Range from 4.2 K to 300K in 40-nm CMOS
    van Staveren, J; Almudever, C Garc{\'\i}a; Scappucci, G; Veldhorst, M; Babaie, M; Charbon, E; Sebastiano, F;
    In ESSCIRC 2019-IEEE 45th European Solid State Circuits Conference (ESSCIRC),
    IEEE, pp. 37--40, 2019.

  17. Subthreshold Mismatch in Nanometer CMOS at Cryogenic Temperatures
    t Hart, PA; Babaie, M; Charbon, E; Vladimirescu, A; Sebastiano, F;
    In ESSDERC 2019-49th European Solid-State Device Research Conference (ESSDERC),
    IEEE, pp. 98--101, 2019.

  18. A 6.5-GHz Cryogenic All-Pass Filter Circulator in 40-nm CMOS for Quantum Computing Applications
    Ruffino, Andrea; Peng, Yatao; Sebastiano, Fabio; Babaie, Masoud; Charbon, Edoardo;
    In 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    2019.

  19. Cryo-CMOS Circuits and Systems for Quantum Computing Applications
    Bishnu Patra; Rosario M. Incandela; Jeroen P. G. van Dijk; Harald A. R. Homulle; Lin Song; Mina Shahmohammadi; Robert B. Staszewski; Andrei Vladimirescu; Masoud Babaie; Fabio Sebastiano; Edoardo Charbon;
    IEEE Journal of Solid-State Circuits,
    Volume 53, Issue 1, pp. 1-13, Jan 2018. DOI: 10.1109/JSSC.2017.2737549
    Keywords: ... CMOS technology;Cryogenics;Oscillators;Process control;Quantum computing;Temperature;CMOS characterization;Class-F oscillator;cryo-CMOS;low-noise amplifier (LNA);noise canceling;phase noise (PN);quantum bit (qubit);quantum computing;qubit control;single-photon avalanche diode (SPAD)..

    Abstract: ... A fault-tolerant quantum computer with millions of quantum bits (qubits) requires massive yet very precise control electronics for the manipulation and readout of individual qubits. CMOS operating at cryogenic temperatures down to 4 K (cryo-CMOS) allows for closer system integration, thus promising a scalable solution to enable future quantum computers. In this paper, a cryogenic control system is proposed, along with the required specifications, for the interface of the classical electronics with the quantum processor. To prove the advantages of such a system, the functionality of key circuit blocks is experimentally demonstrated. The characteristic properties of cryo-CMOS are exploited to design a noise-canceling low-noise amplifier for spin-qubit RF-reflectometry readout and a class-F2,3 digitally controlled oscillator required to manipulate the state of qubits.

  20. Cryo-CMOS Circuits and Systems for Quantum Computing Applications
    B. Patra; R. M. Incandela; J. P. G. van Dijk; H. A. R. Homulle; L. Song; M. Shahmohammadi; R. B. Staszewski; A. Vladimirescu; M. Babaie; F. Sebastiano; E. Charbon;
    IEEE Journal of Solid-State Circuits,
    Volume 53, Issue 1, pp. 309-321, Jan 2018. DOI: 10.1109/JSSC.2017.2737549
    Keywords: ... CMOS technology;Cryogenics;Oscillators;Process control;Quantum computing;Temperature;CMOS characterization;Class-F oscillator;cryo-CMOS;low-noise amplifier (LNA);noise canceling;phase noise (PN);quantum bit (qubit);quantum computing;qubit control;single-photon avalanche diode (SPAD).

  21. A co-design methodology for scalable quantum processors and their classical electronic interface
    van Dijk, Jeroen; Vladimirescu, Andrei; Babaie, Masoud; Charbon, Edoardo; Sebastiano, Fabio;
    In 2018 Design, Automation \& Test in Europe Conference \& Exhibition (DATE),
    IEEE, pp. 573--576, 2018.

  22. Towards a scalable quantum computer
    Almudever, Carmen G; Khammassi, Nader; Hutin, Louis; Vinet, Maud; Babaie, Masoud; Sebastiano, Fabio; Charbon, Edoardo; Bertels, Koen;
    In 2018 13th International Conference on Design \& Technology of Integrated Systems In Nanoscale Era (DTIS),
    IEEE, pp. 1--1, 2018.

  23. Characterization and model validation of mismatch in nanometer CMOS at cryogenic temperatures
    van Dijk, JPG; Babaie, M; Charbon, E; Vladimircscu, A; Sebastiano, F; others;
    In 2018 48th European Solid-State Device Research Conference (ESSDERC),
    IEEE, pp. 246--249, 2018.

  24. Quantum information density scaling and qubit operation time constraints of CMOS silicon-based quantum computer architectures
    Davide Rotta; Fabio Sebastiano; Edoardo Charbon; Enrico Prati;
    npj Quantum Information,
    Volume 3, Issue 1, pp. 26, 2017. DOI: 10.1038/s41534-017-0023-5
    Abstract: ... Even the quantum simulation of an apparently simple molecule such as Fe2S2 requires a considerable number of qubits of the order of 106, while more complex molecules such as alanine (C3H7NO2) require about a hundred times more. In order to assess such a multimillion scale of identical qubits and control lines, the silicon platform seems to be one of the most indicated routes as it naturally provides, together with qubit functionalities, the capability of nanometric, serial, and industrial-quality fabrication. The scaling trend of microelectronic devices predicting that computing power would double every 2 years, known as Moore�s law, according to the new slope set after the 32-nm node of 2009, suggests that the technology roadmap will achieve the 3-nm manufacturability limit proposed by Kelly around 2020. Today, circuital quantum information processing architectures are predicted to take advantage from the scalability ensured by silicon technology. However, the maximum amount of quantum information per unit surface that can be stored in silicon-based qubits and the consequent space constraints on qubit operations have never been addressed so far. This represents one of the key parameters toward the implementation of quantum error correction for fault-tolerant quantum information processing and its dependence on the features of the technology node. The maximum quantum information per unit surface virtually storable and controllable in the compact exchange-only silicon double quantum dot qubit architecture is expressed as a function of the complementary metal�oxide�semiconductor technology node, so the size scale optimizing both physical qubit operation time and quantum error correction requirements is assessed by reviewing the physical and technological constraints. According to the requirements imposed by the quantum error correction method and the constraints given by the typical strength of the exchange coupling, we determine the workable operation frequency range of a silicon complementary metal�oxide�semiconductor quantum processor to be within 1 and 100?GHz. Such constraint limits the feasibility of fault-tolerant quantum information processing with complementary metal�oxide�semiconductor technology only to the most advanced nodes. The compatibility with classical complementary metal�oxide�semiconductor control circuitry is discussed, focusing on the cryogenic complementary metal�oxide�semiconductor operation required to bring the classical controller as close as possible to the quantum processor and to enable interfacing thousands of qubits on the same chip via time-division, frequency-division, and space-division multiplexing. The operation time range prospected for cryogenic control electronics is found to be compatible with the operation time expected for qubits. By combining the forecast of the development of scaled technology nodes with operation time and classical circuitry constraints, we derive a maximum quantum information density for logical qubits of 2.8 and 4?Mqb/cm2 for the 10 and 7-nm technology nodes, respectively, for the Steane code. The density is one and two orders of magnitude less for surface codes and for concatenated codes, respectively. Such values provide a benchmark for the development of fault-tolerant quantum algorithms by circuital quantum information based on silicon platforms and a guideline for other technologies in general.

    document

  25. A reconfigurable cryogenic platform for the classical control of quantum processors
    Harald Homulle; Stefan Visser; Bishnu Patra; Giorgio Ferrari; Enrico Prati; Fabio Sebastiano; Edoardo Charbon; Enrico Prati;
    Review of Scientific Instruments,
    Volume 88, Issue 4, pp. 045103, 2017. DOI: 10.1063/1.4979611
    Abstract: ... The implementation of a classical control infrastructure for large-scale quantum computers is challenging due to the need for integration and processing time, which is constrained by coherence time. We propose a cryogenic reconfigurable platform as the heart of the control infrastructure implementing the digital error-correction control loop. The platform is implemented on a field-programmable gate array (FPGA) that supports the functionality required by several qubit technologies and that can operate close to the physical qubits over a temperature range from 4 K to 300 K. This work focuses on the extensive characterization of the electronic platform over this temperature range. All major FPGA building blocks (such as look-up tables (LUTs), carry chains (CARRY4), mixed-mode clock manager (MMCM), phase-locked loop (PLL), block random access memory, and IDELAY2 (programmable delay element)) operate correctly and the logic speed is very stable. The logic speed of LUTs and CARRY4 changes less then 5%, whereas the jitter of MMCM and PLL clock managers is reduced by 20%. The stability is finally demonstrated by operating an integrated 1.2 GSa/s analog-to-digital converter (ADC) with a relatively stable performance over temperature. The ADCs effective number of bits drops from 6 to 4.5 bits when operating at 15 K.} url={https://doi.org/10.1063/1.4979611

  26. Photon-counting image sensors
    E.R. Fossum; N. Teranishi; A. Theuwissen; D. Stoppa; E. Charbon;
    E.R. Fossum; N. Teranishi; A. Theuwissen; D. Stoppa; E. Charbon (Ed.);
    MDPI, , May 2017. ISBN 978-3-03842-374-4.

  27. Cryogenic CMOS interfaces for quantum devices
    Fabio Sebastiano; Harald A. R. Homulle; Jeroen P. G. van Dijk; Rosario M. Incandela; Bishnu Patra; M. Mehrpoo; Masoud Babaie; Andrei Vladimirescu; Edoardo Charbon;
    In 2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI),
    Vieste, Italy, pp. 59-62, June 2017. DOI: 10.1109/IWASI.2017.7974215
    Keywords: ... CMOS technology;Computers;Cryogenics;Process control;Quantum computing;Semiconductor device modeling;Standards;CMOS;cryo-CMOS;cryogenics;quantum computing;qubits.

    Abstract: ... Quantum computers could efficiently solve problems that are intractable by today's computers, thus offering the possibility to radically change entire industries and revolutionize our lives. A quantum computer comprises a quantum processor operating at cryogenic temperature and an electronic interface for its control, which is currently implemented at room temperature for the few qubits available today. However, this approach becomes impractical as the number of qubits grows towards the tens of thousands required for complex quantum algorithms with practical applications. We propose an electronic interface for sensing and controlling qubits operating at cryogenic temperature implemented in standard CMOS.

  28. Cryo-CMOS Electronic Control for Scalable Quantum Computing: Invited
    Fabio Sebastiano; Harald Homulle; Bishnu Patra; Rosario Incandela; Jeroen van Dijk; Lin Song; Masoud Babaie; Andrei Vladimirescu; Edoardo Charbon;
    In Proceedings of the 54th Annual Design Automation Conference 2017,
    New York, NY, USA, ACM, pp. 13:1--13:6, 2017. DOI: 10.1145/3061639.3072948
    Keywords: ... Cryo-CMOS, cryogenics, device models, error-correcting loop, quantum computation, qubit.

    document

  29. Nanometer CMOS Characterization and Compact Modeling at Deep-Cryogenic Temperatures
    Rosario M. Incandela, Lin Song, Harald Homulle, Fabio Sebastiano; Edoardo Charbon; Andrei Vladimirescu;
    In Proc. European European Solid-State Device Research Conference,
    Leuven, Belgium, pp. 395-398, September 2017. DOI: 10.1109/ESSCIRC.2014.6942105
    Keywords: ... CMOS integrated circuits;system-on-chip;temperature measurement;temperature sensors;thermal diffusivity;SoC thermal monitoring;area-optimized thermal-diffusivity-based temperature sensor;bulk silicon;microprocessors;size 160 nm;standard CMOS process;systems-on-chip;temperature-dependent thermal diffusivity;thermal monitoring;Accuracy;Heating;System-on-chip;Temperature measurement;Temperature sensors.

    Abstract: ... An array of temperature sensors based on the temperature-dependent thermal diffusivity of bulk silicon has been realized in a standard 160-nm CMOS process. The sensors achieve an inaccuracy of ±2.4 °C (3σ) from -40 to 125 °C with no trimming and ±0.65 °C (3σ) with a one temperature trim. Each sensor occupies 0.008 mm², and achieves a resolution of 0.21 °C (rms) at 1 kSa/s. This combination of accuracy, speed, and small size makes such sensors well suited for thermal monitoring in microprocessors and other systems-on-chip.

  30. Cryo-CMOS circuits and systems for scalable quantum computing
    Edoardo Charbon; Fabio Sebastiano; Masoud Babaie; Andrei Vladimirescu; Mina Shahmohammadi; R. B. Staszewski; Harald A. R. Homulle; Bishnu Patra; Jeroen P. G. van Dijk; Rosario M. Incandela; Lin Song; Bahador Valizadehpasha;
    In 2017 IEEE International Solid-State Circuits Conference (ISSCC),
    pp. 264-265, Feb 2017. DOI: 10.1109/ISSCC.2017.7870362
    Keywords: ... CMOS integrated circuits;logic circuits;quantum computing;cryo-CMOS circuits;error-correcting loop;quantum algorithm;quantum bits arrays;quantum coherence loss;qubit states;room-temperature controller;scalable quantum computing;state-of-the-art quantum processors;unprecedented computation power;Cryogenics;Oscillators;Program processors;Quantum computing;Semiconductor device modeling;Substrates;Temperature sensors.

    Abstract: ... In Paper 15.5, Delft University of Technology, EPFL, and Intel present building blocks for a scalable CMOS interface to solid-state quantum processors with a projected efficiency of 200�W/qubit. The circuits include an analog noise-canceled 1.2GHz LNA with 28dB gain, a 6.2GHz class-F local oscillator with better than �145dBc/Hz phase noise at 10MHz offset, a 12µm SPAD with 0.1Hz dark count rate at 2V excess bias, and digital logic, all designed using ad hoc deep-cryogenic models.

  31. Nanometer CMOS characterization and compact modeling at deep-cryogenic temperatures
    R. M. Incandela; L. Song; H. A. R. Homulle; F. Sebastiano; E. Charbon; A. Vladimirescu;
    In 2017 47th European Solid-State Device Research Conference (ESSDERC),
    pp. 58-61, Sept 2017. DOI: 10.1109/ESSDERC.2017.8066591
    Keywords: ... CMOS integrated circuits;cryogenic electronics;integrated circuit modelling;nanoelectronics;augmented MOS11/PSP model;deep-cryogenic temperatures;nanometer CMOS transistors;size 160.0 nm;standard CMOS technologies;temperature 100.0 mK;temperature 4.0 K;Cryogenics;Current measurement;MOS devices;Performance evaluation;Semiconductor device modeling;Transistors.

  32. 15.5 Cryo-CMOS circuits and systems for scalable quantum computing
    E. Charbon; F. Sebastiano; M. Babaie; A. Vladimirescu; M. Shahmohammadi; R. B. Staszewski; H. A. R. Homulle; B. Patra; J. P. G. van Dijk; R. M. Incandela; L. Song; B. Valizadehpasha;
    In 2017 IEEE International Solid-State Circuits Conference (ISSCC),
    pp. 264-265, Feb 2017. DOI: 10.1109/ISSCC.2017.7870362
    Keywords: ... Cryogenics;Oscillators;Program processors;Quantum computing;Semiconductor device modeling;Substrates;Temperature sensors.

  33. Cryo-CMOS electronic control for scalable quantum computing
    Sebastiano, Fabio; Homulle, Harald; Patra, Bishnu; Incandela, Rosario; van Dijk, Jeroen; Song, Lin; Babaie, Masoud; Vladimirescu, Andrei; Charbon, Edoardo;
    In Proceedings of the 54th Annual Design Automation Conference 2017,
    pp. 1--6, 2017.

  34. Cryogenic CMOS interfaces for quantum devices
    Sebastiano, Fabio; Homulle, Harald AR; van Dijk, Jeroen PG; Incandela, Rosario M; Patra, Bishnu; Mehrpoo, Mohammadreza; Babaie, Masoud; Vladimirescu, Andrei; Charbon, Edoardo;
    In 2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI),
    IEEE, pp. 59--62, 2017.

  35. Nonuniformity Analysis of a 65-kpixel CMOS SPAD Imager
    I.M. Antolovic; S. Burri; C. Bruschini; R. Hoebe; E. Charbon;
    IEEE Tr. Electron Devices,
    Volume 63, Issue 1, pp. 57-64, January 2016. DOI: 10.1109/TED.2015.2458295
    document

  36. Tunable single hole regime of a silicon field effect transistor in standard CMOS technolog
    Marco Turchetti; Harald Homulle; Fabio Sebastiano; Giorgio Ferrari; Edoardo Charbon; Enrico Prati;
    Applied Physics Express,
    Volume 9, Issue 1, pp. 014001, 2016. DOI: 10.7567/APEX.9.014001
    Abstract: ... The electrical properties of a Single Hole Field Effect Transistor (SH-FET) based on CMOS technology are analyzed in a cryogenic environment. Few electron?hole Coulomb diamonds are observed using quantum transport spectroscopy measurements, down to the limit of single hole transport. Controlling the hole filling of the SH-FET is made possible by biasing the top gate, while the bulk contact is employed as a back gate that tunes the hole state coupling with the contacts and their distance from the interface. We compare the cryogenic Coulomb blockade regime with the room temperature regime, where the device operation is similar to that of a standard p-MOSFET.

    document

  37. Potential applications of electron emission membranes in medicine
    Yevgen Bilevych; Stefan E. Brunner; Hong Wah Chan; Edoardo Charbon; Harry van der Graaf; Cornelis W. Hagen; Gert Nützelf; Serge D. Pintof; Violeta Prodanović; Daan Rotman; Fabio Santagata; Lina Sarro; Dennis R. Schaar;
    Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
    Volume 809, pp. 171-174, 2016.

  38. Cryo-CMOS for Quantum Computing
    E. Charbon; F. Sebastiano; A. Vladimirescu; H. Homulle; S. Visser; L. Song; R. Incandela;
    In Internation Electon Devices Meeting (IEDM),
    December 2016.

  39. Characterization of bipolar transistors for cryogenic temperature sensors in standard CMOS
    L. Song; H. Homulle; E. Charbon; F. Sebastiano;
    In IEEE Sensors 2016,
    October 2016.

  40. CryoCMOS Hardware Technology a Classical Infrastructure for a Scalable Quantum Computer
    Harald Homulle; Stefan Visser; Bishnu Patra; Giorgio Ferrari; Enrico Prati; Carmen G. Almud{\'e}ver; Koen Bertels; Fabio Sebastiano; Edoardo Charbon;
    In Proceedings of the ACM International Conference on Computing Frontiers,
    New York, NY, USA, ACM, pp. 282--287, 2016. DOI: 10.1145/2903150.2906828
    Keywords: ... (de)coherence, CryoCMOS, cryogenics, error-correcting loop, fault-tolerant computing, quantum computation, quantum micro-architecture, qubit.

    Abstract: ... We propose a classical infrastructure for a quantum computer implemented in CMOS. The peculiarity of the approach is to operate the classical CMOS circuits and systems at deep cryogenic temperatures (cryoCMOS), so as to ensure physical proximity to the quantum bits, thus reducing thermal gradients and increasing compactness. CryoCMOS technology leverages the CMOS fabrication infrastructure and exploits the continuous effort of miniaturization that has sustained Moores Law for over 50 years. Such approach is believed to enable the growth of the number of qubits operating in a fault-tolerant fashion, paving the way to scalable quantum computing machines.

    document

  41. A Heterogeneous Quantum Computer Architecture
    X. Fu; L. Riesebos; L. Lao; C.G. Almudever; F. Sebastiano; R. Versluis; E. Charbon; K. Bertels;
    In Proceedings of the ACM International Conference on Computing Frontiers,
    New York, NY, USA, ACM, pp. 323--330, 2016. DOI: 10.1145/2903150.2906827
    Abstract: ... In this paper, we present a high level view of the heterogeneous quantum computer architecture as any future quantum computer will consist of both a classical and quantum computing part. The classical part is needed for error correction as well as for the execution of algorithms that contain both classical and quantum logic. We present a complete system stack describing the di?erent layers when building a quantum computer. We also present the control logic and corresponding data path that needs to be implemented when executing quantum instructions and conclude by discussing design choices in the quantum plane.} keywords = {quantum computer (micro-)architecture

    document

  42. Characterization of bipolar transistors for cryogenic temperature sensors in standard CMOS
    Lin Song; Harald Homulle; Edoardo Charbon; Fabio Sebastiano;
    In IEEE Sensors 2016,
    pp. 1-3, October 2016. DOI: 10.1109/ICSENS.2016.7808759
    Keywords: ... CMOS integrated circuits;bipolar transistors;cryogenics;temperature sensors;CMOS integrated temperature sensors;bipolar substrate PNP;bipolar transistors;carrier freeze-out;cryogenic temperature sensors;finite current gain;parasitic base resistance;size 160 nm;standard CMOS;temperature 7 K to 298 K;CMOS technology;Cryogenics;Standards;Substrates;Temperature distribution;Temperature sensors;CMOS;cryogenics;substrate bipolar transistors;temperature sensors.

    Abstract: ... This paper presents the cryogenic characterization of the bipolar substrate PNPs that are typically employed as sensing elements in CMOS integrated temperature sensors. PNPs realized in a standard 160-nm CMOS technology were characterized over the temperature range from 7 K to 294 K. Although PNP non-idealities, such as finite current gain and parasitic base resistance, deteriorate at lower temperature, device operation similar to room temperature is observed down to 70 K, while operation at lower temperatures is limited by carrier freeze-out in the base region and limited current gain. These results demonstrate the feasibility of temperature sensors in standard CMOS at cryogenic temperature.

  43. Cryo-CMOS for quantum computing
    Edoardo Charbon; Fabio Sebastiano; Andrei Vladimirescu; Harald Homulle; Stefan Visser; Lin Song; Rosario M. Incandela;
    In Proc. 2016 IEEE International Electron Devices Meeting (IEDM),
    pp. 13.5.1-13.5.4, Dec 2016. DOI: 10.1109/IEDM.2016.7838410
    Keywords: ... CMOS integrated circuits;VLSI;cryogenic electronics;fault tolerance;integrated circuit design;integrated circuit reliability;quantum computing;VLSI design;cryoCMOS;cryogenic CMOS circuits;cryogenic CMOS systems;deep-cryogenic temperatures;fault-tolerant quantum bits;fault-tolerant qubit system;quantum computing;Computers;Fault tolerance;Fault tolerant systems;Field programmable gate arrays;Multiplexing;Quantum computing;Quantum dots.

    Abstract: ... Cryogenic CMOS, or cryo-CMOS circuits and systems, are emerging in VLSI design for many applications, in primis quantum computing. Fault-tolerant quantum bits (qubits) in surface code configurations, one of the most accepted implementations in quantum computing, operate in deep sub-Kelvin regime and require scalable classical control circuits. In this paper we advocate the need for a new generation of deep-submicron CMOS circuits operating at deep-cryogenic temperatures to achieve the performance required in a fault-tolerant qubit system. We outline the challenges and limitations of operating CMOS in near-zero Kelvin regimes and we propose solutions. The paper concludes with several examples showing the suitability of integrating fault-tolerant.qubits with CMOS.

  44. Time estimation with multichannel digital silicon photomultipliers
    E. Venialgo; S. Mandai; T. Gong; D.R. Schaart; E. Charbon;
    Physics in Medicine and Biology,
    Volume 60, Issue 6, pp. 2435-2452, Mar. 2015. DOI: 10.1088/0031-9155/60/6/2435
    document

  45. A first single-photon avalanche diode fabricated in standard SOI CMOS technology with a full characterization of the device
    M.-J. Lee; P. Sun; E. Charbon;
    Optics Express,
    Volume 23, Issue 10, pp. 13200-13209, May 2015.
    document

  46. A 1 x 400 Backside-Illuminated SPAD Sensor With 49.7 ps Resolution, 30 pJ/Sample TDCs Fabricated in 3D CMOS Technology for Near-Infrared Optical Tomography
    J.M. Pavia; M. Scandini; S. Lindner; M. Wolf; E. Charbon;
    IEEE Journal of Solid-State Circuits,
    Volume 50, Issue 10, pp. 2406-2418, Oct. 2015.
    document

  47. CMOS SPAD Based on Photo-Carrier Diffusion Achieving PDP >40% From 440 to 580 nm at 4 V Excess Bias
    C. Veerappan; E. Charbon;
    IEEE Photonics Technology Letters,
    Volume 27, Issue 23, pp. 2445-2448, Dec. 2015.
    document

  48. High-Performance AD and DA Converters, IC Design in Scaled Technologies, and Time-Domain Signal Processing
    S. Mandai; E. Charbon;
    Springer International Publishing, , 2015.
    document

  49. A Flexible 32�32 SPAD Image Sensor with Integrated Microlenses
    Pengfei Sun; E. Charbon; R.Ishihara;
    In International Image Sensor Workshop,
    2015.

  50. Evaluation of Resistance for Chip on Chip Bonding using "AlSi/TiN" bumps with ACP
    M. Akiyama; D. Zhang; M.-J. Lee; E. Charbon;
    In JSAP Spring Meeting,
    Mar. 2015.
    document

  51. SUPER RESOLUTION WITH SPAD IMAGERS
    I.M. Antolovic; S. Burri; C. Bruschini; R. Hoebe; E. Charbon;
    In Focus on Microscopy,
    Mar. 2015.
    document

  52. Fundamentals of a Scalable Network in SPADnet-based PET Systems
    M. Bijwaard; C. Veerappan; C. Bruschini; E. Charbon;
    In IEEE Nuclear Science Symposium,
    Nov. 2015.
    document

  53. A 67,392 SPAD PVTB-Compensated Multi-Channel Digital SiPM with 432 Column-Parallel 48ps 17-bit TDCs for Endoscopic Time-of-flight PET
    A.J. Carimatto; S. Mandai; E. Venialgo; T. Gong; G. Borghi; D. Schaart; E. Charbon;
    In IEEE International Solid-State Circuits Conference,
    Feb. 2015.
    document

  54. All-Digital Biomedical Imaging
    E. Charbon;
    In European Solid-State Circuits Conference,
    Sept. 2015.
    document

  55. Large Format Single-Photon and Multi-Photon Imaging
    E. Charbon;
    In IEEE International Workshop on Advances in Sensors and Interfaces,
    Aug. 2015.
    document

  56. SPAD Arrays and Digital SiPMs for All-Digital Imaging
    E. Charbon; I.M. Antolovic;
    In Single Photon Workshop,
    Jul. 2015.
    document

  57. A Structure of an Image Sensor Operating at 1 Gfps
    V.T.S. Dao; A. Q. Nguyen; K. Shimonomura; Y. Kamakura; N. Minamitani; Chao Zhang; E. Charbon; L. Haspeslagh; P. Goetshhalckx; P. De Moor; T. G. Etoh;
    In International Conference on Advanced Technology in Experimental Mechanics,
    Oct. 2015.
    document

  58. 200 MS/s ADC implemented in a FPGA employing TDCs
    H. Homulle; F. Regazzoni; E. Charbon;
    In International Symposium on Field-Programmable Gate Arrays,
    Feb. 2015.
    document

  59. IMAGING FLUORESCENCE CORRELATION: NOVEL RESULTS ON NEW IMAGE SENSORS (SPAD ARRAYS) AND A COMPREHENSIVE NEW SOFTWARE PACKAGE (QUICKFIT 3.0)
    J.W. Krieger; J. Buchholz; S. Burri; C. Bruschini; E. Charbon; C.S. Garbe; J. Langowski;
    In Focus on Microscopy,
    Mar. 2015.
    document

  60. Characterization of Single-Photon Avalanche Diodes in Standard 140-nm SOI CMOS Technology
    M.-J. Lee; P. Sun; E. Charbon;
    In International Image Sensor Workshop,
    Jun. 2015.
    document

  61. Fluorescence lifetime imaging to differentiate bound from unbound ICG-cRGD both in vitro and in vivo
    P.L. Stegehuis; M.C. Boonstra; F.E. Powolny; R. Sinisi; H. Homulle; C. Bruschini; E. Charbon; C.J.H. van de Velde; B.P.F. Lelieveldt; A.L. Vahrmeijer; J. Dijkstra; M. van de Giessen;
    In SPIE,
    Feb. 2015.
    document

  62. A Flexible 32x32 SPAD Image Sensor with Integrated Microlenses
    P. Sun; E. Charbon; R. Ishihara;
    In International Image Sensor Workshop,
    Jun. 2015.
    document

  63. Practical Time Mark Estimators for Multichannel Digital Silicon Photomultipliers
    E. Venialgo; S. Mandai; T. Gong; D. Schaart; E. Charbon;
    In IEEE Nuclear Science Symposium,
    Nov. 2015.
    document

  64. Designing pixel parallel, localized drivers of a 3D 1Gfps image sensor family
    Chao Zhang; V. T. S. Dao; T. G. Etoh; K. Shimonomura; E. Charbon;
    In International Image Sensor Workshop,
    Jun. 2015.
    document

  65. A Flexible Ultrathin-Body Single-Photon Avalanche Diode With Dual-Side Illumination
    Pengfei Sun; Charbon, E.; Ishihara, R.;
    IEEE Journal of Selected Topics in Quantum Electronics,
    Volume 20, Issue 6, pp. 1-8, Nov 2014.
    document

  66. SPADnet: Embedded coincidence in a smart sensor network for PET applications
    C. Bruschini; E. Charbon; C. Veerappan; L.H.C. Braga; N. Massari; M. Perenzoni; L. Gasparini; D. Stoppa; R. Walker; A. Erdogan; R. K. Henderson; S. East; L. Grant; B. Jatekos; F. Ujhelyi; G. Erdei; E. L?rinc;
    Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
    Volume 734, Issue Part B, pp. 122-126, Jan. 2014.
    document

  67. Architecture and applications of a high resolution gated SPAD image sensor
    S. Burri; Y. Maruyama; X. Michalet; F. Regazzoni; C. Bruschini; E. Charbon;
    Optics Express,
    Volume 22, Issue 14, pp. 17573-17589, Jul. 2014.
    document

  68. Single-photon imaging in complementary metal oxide semiconductor processes
    E. Charbon;
    Philosophical Transactions of the Royal Society A Mathematical, Physical \& Engineering Sciences,
    Volume 372, Issue 2012, pp. 1-31, Mar. 2014.
    document

  69. A 780 x 800 um^2 Multichannel Digital Silicon Photomultiplier With Column-Parallel Time-to-Digital Converter and Basic Characterization
    S. Mandai; V. Jain; E. Charbon;
    IEEE Transactions on Nuclear Science,
    Volume 61, Issue 1, pp. 44-52, Feb. 2014.
    document

  70. Timing optimization utilizing order statistics and multichannel digital silicon photomultipliers
    S. Mandai; E. Venialgo; E. Charbon;
    Optics Letters,
    Volume 39, Issue 3, pp. 552-554, Feb. 2014.
    document

  71. A 1024 8, 700-ps Time-Gated SPAD Line Sensor for Planetary Surface Exploration With Laser Raman Spectroscopy and LIBS
    Y. Maruyama; J. Blacksberg; E. Charbon;
    IEEE Journal of Solid-State Circuits,
    Volume 49, Issue 1, pp. 179-189, Jan. 2014.
    document

  72. Single-Photon Avalanche Diode Imagers Applied to Near-Infrared Imaging
    J. M. Pavia; M. Wolf; E. Charbon;
    IEEE Journal of Selected Topics in Quantum Electronics,
    Volume 20, Issue 6, pp. 3800908, Nov.-Dec. 2014.
    document

  73. Measurement and modeling of microlenses fabricated on single-photon avalanche diode arrays for fill factor recovery
    J. M. Pavia; M. Wolf; E. Charbon;
    Optics Express,
    Volume 22, Issue 4, pp. 4202-4213, Feb. 2014.
    document

  74. UV-Sensitive Low Dark-Count PureB Single-Photon Avalanche Diode
    L. Qi; K. R. C. Mok; M. Aminian; E. Charbon; L. K. Nanver;
    IEEE Transactions on Electron Devices,
    Volume 61, Issue 11, pp. 3768-3774, Nov. 2014.

  75. A Flexible Ultrathin-Body Single-Photon Avalanche Diode With Dual-Side Illumination
    P. Sun; E. Charbon; R. Ishihara;
    IEEE Journal of Selected Topics in Quantum Electronics,
    Volume 20, Issue 6, pp. 3804708, Nov.-Dec. 2014.

  76. A Substrate Isolated CMOS SPAD Enabling Wide Spectral Response and Low Electrical Crosstalk
    C. Veerappan; E. Charbon;
    IEEE Journal of Selected Topics in Quantum Electronics,
    Volume 20, Issue 6, pp. 3801507, Nov.-Dec. 2014.

  77. A 65k pixel, 150k frames-per-second camera with global gating and micro-lenses suitable for fluorescence lifetime imaging
    S. Burri; F. Powolny; C. E. Bruschini; X. Michalet; F. Regazzoni; E. Charbon;
    In Proc. SPIE,
    pp. 914109, May 2014.

  78. Time-resolved imaging system for fluorescence-guided surgery with lifetime imaging capability
    F. Powolny; K. Homicsko; R. Sinisi; Claudio E. Bruschini; E. Grigoriev; H. Homulle; John O. Prior; D. Hanahan; E. Dubikovskaya; E. Charbon;
    In Proc. SPIE,
    pp. 912938, May 2014.

  79. A 270 Ge-on-Si photodetector array for sensitive infrared imaging
    A. Sammak; M. Aminian; L. Qi; E. Charbon; L.K. Nanver;
    In Proc. SPIE,
    pp. 914104, May 2014.

  80. SPADnet: a fully digital, scalable and networked photonic component for time-of-flight PET applications
    C. Bruschini; E. Charbon; C. Veerappan; L.H.C. Braga; N. Massari; M. Perenzoni; L. Gasparini; D. Stoppa; R. Walker; A. Erdogan; R. K. Henderson; S. East; L. Grant; B. Jatekos; F. Ujhelyi; G. Erdei; E. Lorinc;
    In Proc. SPIE,
    pp. 912913, May 2014.

  81. SPADs for Quantum Random Number Generators and beyond
    S. Burri; D. Stucki; Y. Maruyama; C. Bruschini; E. Charbon; F. Regazzoni;
    In ASP-DAC,
    Feb. 2014.

  82. Large Scale CMOS Single-Photon Detector Arrays for PET Applications
    A. Carimatto; E. Charbon;
    In Front-End Electronics,
    May 2014.

  83. Single-Photon Imagers
    E. Charbon;
    In OSA Conference on Lasers \& Electro-Optics (CLEO),
    June 2014.

  84. Single-Photon Imaging and Digital Silicon Photomultipliers in CMOS
    E. Charbon;
    In IEDM,
    Dec. 2014.

  85. Time-of-Flight Approaches to SPAD and SiPM Imaging
    E. Charbon;
    In iTOF Workshop,
    Mar. 2014.

  86. Introduction to Time-of-flight Imaging
    E. Charbon;
    In IEEE Sensors,
    Nov. 2014.

  87. Toward 1Gfps: Evolution of Ultra-high-speed Image Sensors: ISIS, BSI, Multi-Collection Gates, and 3D-stacking
    T. G. Etoh; V. T. S. Dao; K. Shimonomura; E. Charbon; C. Zhang; Y. Kamakura; T. Matsuoka;
    In IEDM,
    Dec. 2014.

  88. Linear-Mode Avalanche Photodiodes in Standard CMOS Technology
    Myung-Jae Lee; Woo-Young Choi; Edoardo Charbon;
    In International Conference on Optoelectronics and Microelectronics Technology and Application,
    Nov. 2014.

  89. Towards CMOS-Compatible Photon-Counting Imagers in the Whole 10 nm - 1600 nm Spectral Range with PureB Si and PureGaB Ge-on-Si Technology
    L.K. Nanver; L. Qi; A. Sammak; K. R. C. Mok; M. Aminian; E. Charbon;
    In ICSICT,
    Oct. 2014.

  90. A Dual Backside-Illuminated 800-Cell Multi-Channel Digital SiPM with 100 TDCs in 130nm 3D IC Technology
    J. Mata Pavia; M. Wolf; E. Charbon;
    In IEEE Nuclear Science Symposium,
    Nov. 2014.

  91. Fabrication of Low Dark-Count PureB Single-Photon Avalanche Diodes
    L. Qi; K.R.C. Mok; M. Aminian; E. Charbon; L.K. Nanver;
    In IEEE UB MICRO,
    2014.

  92. Fabrication of Pure-GaB Ge-on-Si Photodiodes for Well-Controlled 100-pA-Level Dark Currents
    A. Sammak; M. Aminian; L. Qi; W.B de Boer; E. Charbon; L.K Nanver;
    In IEEE Electrochemical Society (ECS),
    Aug. 2014.

  93. Fabrication of Pure-Gab Ge-on-Si Photodiodes for Well-Controlled 100-Picoampere-Level Dark Currents
    A. Sammak; M. Aminian; L. Qi; W. de Boer; E. Charbon; L.K. Nanver;
    In Electrochemical Society (ECS),
    Oct. 2014.

  94. SPADnet: A Fully Digital, Scalable and Networked Photonic Component for Time-of-Flight PET Applications
    C. Bruschini; E. Charbon; C. Veerappan; L.H.C. Braga; N. Massari; M. Perenzoni; L. Gasparini; D. Stoppa; R. Walker; A. Erdogan; R. K. Henderson; S. East; L. Grant; B. Jatekos; F. Ujhelyi; G. Erdei; E. Lorinc;
    In Proc. SPIE,
    Apr. 2014.

  95. A CMOS Multi-Channel Digital SiPM for Endoscopic PET Application
    A. J. Carimatto; S. Mandai; E. Charbon;
    In IEEE Medical Imaging Conference,
    Nov. 2014.

  96. Updates from the SPADnet Project (A Fully Digital, Scalable and Networked Photonic Component for Time-of-Flight PET Applications)
    E. Charbon; C. Bruschini; C. Veerappan; L.H.C. Braga; N. Massari; M. Perenzoni; L. Gasparini; D. Stoppa; R. Walker; A. Erdogan; R.K. Henderson; S. East; L. Grant; B. Jatekos; F. Ujhelyi; G. Erdei; E. Lorincz;
    In IEEE PSMR,
    May 2014.

  97. FPGA Based Fast Gamma-Ray Time Mark Estimator for Ultra-Miniature Endoscopic PET Applications
    T. Gong; S. Mandai; E. Venialgo; A.J. Carimatto; E. Charbon;
    In IEEE Nuclear Science Symposium,
    Nov. 2014.

  98. Distributed Coincidence Detection for Multi-ring based PET Systems
    C. Veerappan; C. Bruschini; E. Charbon;
    In Real Time Conference,
    May 2014.

  99. SPADnet Network Modeling, Simulation and Emulation
    C. Veerappan; E. Venialgo; C. Bruschini; E. Charbon;
    In Real Time Conference,
    May 2014.

  100. MD-SiPM PET Detector Module Design
    E. Venialgo; S. Mandai; E. Charbon;
    In IEEE Nuclear Science Symposium,
    Nov. 2014.

  101. A 270�1 Ge-on-Si photodetector array for sensitive infrared imaging
    Sammak, A; Aminian, M; Lin Qi; Charbon, E; Nanver, LK;
    In Optical Sensing and Detection III Vol. 9141. Proceedings of SPIE- International Society for Optical Engineering,
    pp. 1-7, 2014.

  102. A 19.6ps, FPGA-Based TDC with Multiple Channels for Open Source Applications
    M.W. Fishburn; H. Menninga; E. Charbon;
    IEEE Trans. Nuclear Science,
    Volume 60, Issue 3, pp. 2203-2208, June 2013.
    document

  103. A Preliminary Study on the Environmental Dependences of Avalanche Propagation in Silicon
    M.W. Fishburn; E. Charbon;
    IEEE Trans. Electron Devices,
    Volume 60, Issue 3, pp. 1028-1033, February 2013.
    document

  104. An Electric Field Volumne Integral Equation Approach to Simulate Surface Plasmon Polaritons
    R. Remis; E. Charbon;
    Advanced Electromagnetics,
    Volume 2, Issue 1, pp. 15-24, January 2013.
    document

  105. Toward One Giga Frames per Second Ð Evolution of In-Situ Storage Image Sensors
    T. G. Etoh; D.V.T. Son; T. Yamada; E. Charbon;
    Sensors,
    Volume 3, Issue 4, pp. 4640-4658, April 2013.
    document

  106. The Performance of 2D Array Detectors for Light Sheet based Fluorescence Correlation Spectroscopy
    A.P. Singh; J.W. Krieger; J. Buchholz; E. Charbon; J. Langowski; T. Wohland;
    OSA Optics Express,
    Volume 21, Issue 7, pp. 8652-8668, April 2013.
    document

  107. Protein-Protein Interactions In Vivo Studied by Single Plane Illumination Fluorescence Correlation Spectroscopy (SPIM-FCS)
    A. Pernus; J.W. Krieger; J. Buchholz; A.P. Singh; E. Charbon; T. Wohland; J. Langowski;
    Biophysical Journal,
    Volume 104, Issue 2, pp. 575a, January 2013.
    document

  108. The Tipsy Single Soft Photon Detector and the Trixy Ultrafast Tracking Detector
    H. van der Graaf; M.A. Bakker; H.W. Chan; E. Charbon; F. Santagata; P.M. Sarro; D.R. Schaart;
    IOP Journal of Instrumentation,
    Volume 8, Issue 1, pp. C01036, January 2013.
    document

  109. Programmable Architecture for Quantum Computing
    J. Chen; L. Wang; E. Charbon; B. Wang;
    Physical Review A,
    Volume 88, Issue 2, pp. 22311/1-13, 2013.
    document

  110. SPADnet: Embedded Coincidence in a Smart Sensor Network for PET Applications
    C. Bruschini; E. Charbon; C. Veerappan; L.H.C. Braga; N. Massari; M. Perenzoni; L. Gasparini; D. Stoppa; R. Walker; A. Erdogan; R.K. Henderson; S. East; L. Grant; B. Jekos; F. Ujhelyi; G. Erdei; E. Lorincz a;
    IEEE Nuclear Instruments and Methods in Physics Research A,
    October 2013.
    document

  111. A 4 x 4 x 416 digital SiPM array with 192 TDCs for multiple high-resolution timestamp acquisition
    S. Mandai; E. Charbon;
    IOP Journal of Instrumentation,
    Volume 8, Issue 5, pp. P05024, May 2013.
    document

  112. A 3.3-to-25V all-digital charge pump based system with temperature and load compensation for avalanche photodiode cameras with fixed sensitivity
    S. Mandai; E. Charbon;
    IOP Journal of Instrumentation,
    Volume 8, Issue 3, pp. P03013, April 2013.
    document

  113. EndoTOFPET-US: a novel multimodal tool for endoscopy and positron emission tomography
    N. Aubry; E. Auffray; ...; E. Charbon; ...;
    IOP Journal of Instrumentation,
    Volume 8, Issue 4, pp. C04002, April 2013.
    document

  114. Timing Optimization of a H-Tree based Digital Silicon Photomultiplier
    S. Mandai; E. Charbon;
    IOP Journal of Instrumentation,
    Volume 8, pp. P09016, September 2013.
    document

  115. A 1024?8 700ps Time-Gated SPAD Line Sensor for Laser Raman Spectroscopy and LIBS in Space and Rover-Based Planetary Exploration
    Y. Maruyama; J. Blacksberg; E. Charbon;
    In Proc. IEEE International Solid-State Circuits Conference (ISSCC),
    February 2013.
    document

  116. SPADnet: Embedded Coincidence in a Smart Sensor Network for PET Applications
    E. Charbon; C. Bruschini; C. Veerappan; D. Stoppa; N. Massari; M. Perenzoni; L.H.C. Braga; L. Gasparini andR.K. Henderson; R. Walker; S. East; L. Grant; B. Jaekos; E. Lorincz; F. Ujhelyi; G. Erdei; E. Gros d'Ai;
    In Proc. PET/MR and SPECT/MR Conference (PSMR),
    May 2013.
    document

  117. Single-Photon Image Sensors
    E. Charbon; F. Regazzoni;
    In Proc. Design Automation Conference,
    June 2013.
    document

  118. UV-Sensitive Low Dark-Count PureB Single-Photon Avalanche Diode
    L. Qi; K.R.C. Mok; T.L.M. Scholtes; M Aminian; E. Charbon; L.K. Nanver;
    In Proc. IEEE Sensors,
    November 2013.
    document

  119. Silicon Integrated Electrical Micro-Lens for CMOS SPADs based on Avalanche Propagation Phenomenon
    C. Veerappan; Y. Maruyama; E. Charbon;
    In Proc. International Image Sensor Workshop,
    June 2013.
    document

  120. Monolithic Integration of LEDs and Silicon Photomultipliers in Standard CMOS Technology for Consumer Applications
    N. Lodha; S. Mandai; E. Charbon;
    In Proc. International Image Sensor Workshop,
    June 2013.
    document

  121. Comparison of Two Cameras based on Single Photon Avalanche Diodes (SPADs) for Fluorescence Lifetime Imaging Application with Picosecond Resolution
    F. Powolny; S. Burri; C. Bruschini; X. Michalet andF. Regazzoni; E. Charbon;
    In Proc. International Image Sensor Workshop,
    June 2013.
    document

  122. A Multi-Channel Digital Silicon Photomultiplier Array for Nuclear Medical Imaging Systems based on PET-MRI
    S. Mandai; E. Charbon;
    In Proc. International Image Sensor Workshop,
    June 2013.
    document

  123. Stabilizing Sensitivity in Large Single-Photon Image Sensors with an Integrated 3.3-to-25V All-Digital Charge Pump
    S. Mandai; E. Charbon;
    In Proc. International Image Sensor Workshop,
    June 2013.
    document

  124. Towards a High-Speed Quantum Random Number Generator
    D. Stucki; S. Burri; E. Charbon; C. Chunnilall andA. Meneghetti; F. Regazzoni;
    In Proc. SPIE Conference on Defense and Security,
    September 2013.
    document

  125. Photon Counting Cameras for LIDARs and Nuclear Medicine andand Molecular Imaging
    E. Charbon;
    In Proc. International Semiconductor Conference Dresden Grenoble,
    September 2013.
    document

  126. Large Format Single-Photon Image Sensors in CMOS Technology
    E. Charbon; E. Venialgo; S. Mandai;
    In Proc. Single Photon Workshop,
    October 2013.
    document

  127. SPADnet: A Fully Digital, Networked Approach to MRI Compatible PET Systems Based on Deep-Submicron CMOS Technology
    E. Charbon; C. Bruschini; C. Veerappan; L.H.C. Braga; N. Massari; M. Perenzoni; L. Gasparini; D. Stoppa; R. Walker; A. Erdogan; R.K. Henderson; S. East; L. Grant; B. Jatekos; F. Ujhelyi; G. Erdei; E. Lorincz;
    In Proc. IEEE Nuclear Science Symposium and Medical Imaging Conference,
    October 2013.
    document

  128. Energy Estimation Technique Utilizing Timing Information for TOF-PET Application
    S. Mandai; E. Venialgo; E. Charbon;
    In Proc. IEEE Nuclear Science Symposium and Medical Imaging Conference,
    October 2013.
    document

  129. Analysis of Timing Resolution of a Digital Silicon Photomultiplier
    S. Mandai; E. Charbon;
    In Proc. IEEE Nuclear Science Symposium and Medical Imaging Conference,
    October 2013.
    document

  130. Comparison of Digital and Analog Silicon Photomultiplier for Positron Emission Tomography Application
    C. Xu; E. Garutti; S. Mandai; E. Charbon;
    In Proc. IEEE Nuclear Science Symposium and Medical Imaging Conference,
    October 2013.
    document

  131. Time Mark Estimators for MD-SiPM and Impact of System Parameters
    E. Venialgo; S. Mandai; E. Charbon;
    In Proc. IEEE Nuclear Science Symposium and Medical Imaging Conference,
    October 2013.
    document

  132. A Geiger Mode APD fabricated in Standard 65nm CMOS Technology
    E. Charbon; H.J. Yoon; Y. Maruyama;
    In Proc. IEEE International Electron Device Meeting (IEDM),
    December 2013.
    document

  133. A Flexible Ultra-Thin-Body SOI Single-Photon Avalanche Diode
    P. Sun; B. Mimoun; E. Charbon; R. Ishihara;
    In Proc. IEEE International Electron Device Meeting (IEDM),
    December 2013.
    document

  134. A Flexible Ultra-Thin-Body SOI Single-Photon Avalanche Diode
    Pengfei Sun; Benjamin Mimoun; Edoardo Charbon; Ryoichi Ishihara;
    In IEEE International Electron Device Meeting (IEDM),
    Washington, DC, USA, 2013.

  135. Improvement on MIS Properties of Single-Grain Germanium by Pulsed-Laser Annealing
    Pengfei Sun; M. van der Zwan; A. Arslan; E. Charbon; R. Ishihara;
    In 44th IEEE Semiconductor Interface Specialists Conference,
    Arlington, USA, 2013.

  136. A Time-Resolved, Low-Noise Single-Photon Image Sensor Fabricated in Deep-Submicron CMOS Technology
    M. Gersbach; Y. Maruyama; R. Trimananda; M.W. Fishburn; D. Stoppa; J.A. Richardson; R. Walker; R.K.Henderson; E. Charbon;
    Journal of Solid-State Circuits,
    Volume 47, Issue 6, pp. 1394-1407, June 2012.
    document

  137. A Wide Spectral Range Single-Photon Avalanche Diode Fabricated in an Advanced 180nm CMOS Technology
    S. Mandai; E. Charbon;
    Optics Express,
    Volume 20, Issue 3, pp. 5849-57, March 2012.
    document

  138. Optically-Clocked Instruction Set Extensions for High Efficiency Embedded Processors
    C. Favi; T.H. Kluter; C. Mester; E. Charbon;
    Transactions on Circuits and Systems,
    Volume 59, Issue 3, pp. 604-615, March 2012.
    document

  139. A 128-Channel, 8.9ps LSB Column-Parallel Two-Stage TDC Based on Time Difference Amplification for Time-Resolved Imaging
    S. Mandai; E. Charbon;
    Transactions on Nuclear Science,
    Volume 59, Issue 5, pp. 2463-2470, October 2012.
    document

  140. FPGA implementation of a 32x32 autocorrelator array for analysis of fast image series
    J. Buchholz; J. W. Krieger; G. Mocsar; B. Kreith; E. Charbon; G. Vamosi; U. Kebschull; and J. Langowski;
    Optics Express,
    Volume 20, Issue 16, pp. 17767-17782, July 2012.
    document

  141. Fluorescent Magnetic Bead and Cell Differentiation/Counting using a CMOS SPAD Matrix
    E. DuPont; M. Gijs; E. Charbon;
    Sensors and Actuators B Chemical,
    Volume 174, pp. 609-615, July 2012.
    document

  142. An Electric Field Volume Integral Equation Approach to Simulate Surface Plasmon Polaritons
    R.F. Remis; E. Charbon;
    In Proceedings Advanced Electromagnetics Symposium AES 2012,
    Paris (France), AES, pp. 91-100, April 2012.
    document

  143. Distorsions from Multi-Photon Triggering in a Single CMOS SPAD
    M.W. Fishburn; E. Charbon;
    In Proc. SPIE DSS Single-Photon Imaging,
    April 2012.
    document

  144. Low Power Time-of-Flight 3D Imager System in Standard CMOS
    P. Kumar; E. Charbon; R.B. Staszewski;
    In Proc. IEEE Intl. Conference of Electronics, Circuits and Systems (ICECS),
    December 2012.
    document

  145. Sensor Network Architecture for a Fully Digital and Scalable SPAD based PET System
    C. Veerappan; C. Bruschini; E. Charbon;
    In Proc. IEEE Nuclear Science Symposium (NSS),
    October 2012.
    document

  146. Statistical Limitations of TDC Density Tests
    M.W. Fishburn; E. Charbon;
    In Proc. IEEE Nuclear Science Symposium (NSS),
    October 2012.
    document

  147. Multi-Channel Digital SiPMs: Concept, Analysis and Implementation
    S. Mandai; E. Charbon;
    In Proc. IEEE Nuclear Science Symposium (NSS),
    October 2012.
    document

  148. A Fully-Integrated 780x800um2 Multi-Digital Silicon Photomultiplier With Column-parallel Time-to-Digital Converter
    S. Mandai; V.S. Jain; E. Charbon;
    In Proc. IEEE European Solid-State Circuits Conference (ESSCIRC),
    September 2012.
    document

  149. Maximizing Science Return from a Single On-Surface Mineralogy Tool: Combined Raman, LIBS, and Fluorescence?Spectroscopy
    J. Blacksberg; Y. Maruyama; M. Choukroun; E. Charbon; G.R. Rossman;
    In Proc. Concepts and Approaches for Mars,
    2012.
    document

  150. New Microscopic Laser-Coupled Spectroscopy Instrument Combining Raman, LIBS, and Fluorescence for Planetary Surface Mineralogy
    J. Blacksberg; Y. Maruyama; M. Choukroun; E. Charbon; G.R. Rossman;
    In Proc. Lunar & Planetary Science Conference,
    March 2012.
    document

  151. A time-resolved 128x128 SPAD camera for laser Raman spectroscopy
    Y. Maruyama; J. Blacksberg; G.R. Rossman; E. Charbon;
    In Proc. SPIE DSS Single-Photon Imaging,
    April 2012.
    document

  152. Combined Raman and LIBS for Planetary Surface Exploration: Enhanced Science Return Enabled by Time-Resolved Laser Spectroscopy
    J. Blacksberg; Y. Maruyama; M. Choukroun; E. Charbon; G.R. Rossman;
    In Proc. NASA International Workshop on Instrumentation for Planetaru Missions,
    October 2012.
    document

  153. A Single-Photon, Deep Sub-Nanosecond Integrated Circuits for Fluorescence Lifetime Imaging Microscopy
    Y. Maruyama; E. Charbon;
    In Proc. ECS,
    May 2012.
    document

  154. A Ge-on-Si single-photon avalanche diode operating in Geiger mode at infrared wavelengths
    M. Aminian; A. Sammak; L. L. Qi K. Nanver; E. Charbon;
    In Proc. SPIE: Advanced Photon Counting Techniques VI,
    Baltimore, Maryland, Apr 2012. DOI 10.1117/12.920561.

  155. Low power time-of-flight 3D imager system in standard CMOS
    P. Kumar; E. Charbon; R. B. Staszewski; A. Borowski;
    In 2012 19th IEEE International Conference on Electronics, Circuits, and Systems (ICECS 2012),
    pp. 941-944, Dec 2012.

  156. Single-Photon Detection--Evolving CMOS Technology for High-Performance
    E. Charbon;
    OPN Optics and Photonics News,
    pp. 14-15, May 2011.
    document

  157. Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm
    D.U. Li; J. Arlt; D. Tyndall; R. Walker; J. Richardson; D. Stoppa; E. Charbon; R.K. Henderson;
    Journal of Biomedical Optics,
    Volume 16, Issue 9, pp. 096012;1-12, September 2011.
    document

  158. Fast Single-Photon Avalanche Diode Arrays for Laser Raman Spectroscopy
    J. Blacksberg; Y. Maruyama; E. Charbon; G. Rossman;
    Optics Letters,
    Volume 36, Issue 18, pp. 3672-3674, September 2011.
    document

  159. Optically-Clocked Instruction Set Extensions for High Efficiency Embedded Processors
    C. Favi; T.H. Kluter; C. Mester; E. Charbon;
    IEEE Transactions of Circuits and Systems I(to appear),
    December 2011.
    document

  160. Reduction of Fixed-Position Noise in Position-Sensitive, Single-Photon Avalanche Diodes
    M.W Fishburn; E. Charbon;
    Transactions on Electron Devices,
    Volume 58, Issue 8, pp. 2354-2361, May 2011.
    document

  161. An Implementation of a Spike-Response Model with Escape Noise Using an Avalanche Diode
    T. Clayton; K. Cameron; B.R. Rae; N. Sabatier; E. Charbon; R.K. Henderson; G. Leng; A. Murray;
    IEEE Transactions on Biomedical Circuits and Systems,
    Volume 5, Issue 3, pp. 231-243, June 2011.
    document

  162. Hybrid Small Animal Imaging System Combining Magnetic Resonance Imaging with Fluorescence Tomography Using Single Photon Avalanche Diode Detectors
    F. Stucker; C. Baltes; K. Dikaiou; D. Vats; L. Carrara; E. Charbon; J. Ripoll; M. Rudin;
    IEEE Transactions on Medical Imaging,
    Volume 30, Issue 6, pp. 1265-73, February 2011.
    document

  163. Monolithic Single-Photon Avalanche Diodes: SPADs
    E. Charbon; M.W. Fishburn;
    In Single-Photon Imaging,
    Heidelberg, Springer, September 2011. ISBN 978-3-642-18442-0. DOI: 10.1007/978-3-642-18443-7

  164. A 160x128 Single-Photon Image Sensor with On-Pixel 55ps 10b Time-to-Digital Converter
    C. Veerappan; J. Richardson; R. Walker; D.U. Li; M.W. Fishburn; Y. Maruyama; D. Stoppa; F. Borghetti; M. Gersbach; R.K. Henderson; E Charbon;
    In Proc. IEEE Intl. Conference of Solid-State Circuits (ISSCC),
    pp. 312-314, February 2011.
    document

  165. Who Needs Electrons? (KEYNOTE SPEECH)
    E. Charbon;
    In Proc. IEEE Intl. Conference on ASIC (ASICON),
    October 2011.

  166. Electrons: Do We Really Need Them? (KEYNOTE SPEECH)
    E. Charbon;
    In Proc. Intl. Workshop on Advances in Sensor Integration (IWASI),
    June 2011.

  167. A Fully-integrated, Time-resolved 160x128 SPAD Pixel Array with Micro-concentrators
    J. Arlt; F. Borghetti; C. Bruschini; E. Charbon; D. Dryden; S. East; M.W. Fishburn; M. Gersbach; G. Giraud; L. Grant; R.K. Henderson; D.U. Li; Y. Maruyama; D. Stoppa; D. Tyndall; C. Veerappan; R. Walker;
    In Proc. SPIE Defense and Security,
    April 2011.

  168. A CMOS Compatible Ge-on-Si APD Operating in Proportional and Geiger Modes at Infrared Wavelengths
    A. Sammak; M. Aminian; L. Qi; W. D. de Boer; E. Charbon; L. K. Nanver;
    In Proc. IEEE Intl. Electron Device Meeting (IEDM),
    December 2011.
    document

  169. A Multi-channel, 10ps Resolution, FPGA-Based TDC with 300MS/s Throughput for Open-Source PET Applications
    H. Menninga; C. Favi; M.W. Fishburn; E. Charbon;
    In Proc. IEEE Nuclear Science Symposium (NSS),
    October 2011.
    document

  170. First Measurement of Scintillation Photon Arrival Statistics Usign a High-Granularity Solid-State Photosensor Enabling Time-Stamping of up to 20,480 Single Photons
    J.R. Meijlink; C. Veerappan; S. Seifert; D. Stoppa; R.K. Henderson; E. Charbon; D.R. Schaart;
    In Proc. IEEE Nuclear Science Symposium (NSS),
    October 2011.
    document

  171. Environmental Effects on Photomultiplication Propagation in Silicon
    M.W. Fishburn; E. Charbon;
    In Proc. IEEE Nuclear Science Symposium (NSS),
    October 2011.
    document

  172. A Handheld Probe for Beta+-Emitting Radiotracer Detection in Surgery, Biopsy and Medical Diagnostics based on Silicon Photomultipliers
    C. Mester; C. Bruschini; P. Magro; N. Demartines; V. Dunet; E. Grigoriev; A. Konoplyannikov; V. Talanov; M. Matter; J.O. Prior; E. Charbon;
    In Proc. IEEE Nuclear Science Symposium (NSS),
    October 2011.
    document

  173. Characterization of Large-Scale Non-Uniformities in a 20k TDC/SPAD Array Integrated in a 130nm CMOS Process
    C. Veerappan; J. Richardson; R. Walker; D.U. Li; M.W. Fishburn; D. Stoppa; F. Borghetti; Y. Maruyama; M. Gersbach; R.K. Henderson; C. Bruschini; E. Charbon;
    In Proc. IEEE European Solid-State Electron Device Conference (ESSDERC),
    pp. 331-334, September 2011.
    document

  174. A 128-Channel, 9ps Column-Parallel Two-Stage TDC Based on Time Difference Amplification for Time-resolved Imaging
    S. Mandai; E. Charbon;
    In Proc. IEEE European Solid-State Circuits Conference (ESSCIRC),
    pp. 119-122, October 2011.
    document

  175. A Compact Probe for Beta+Emitting Radiotracer Detection in Suregery, Biopsy, and Medical Diagnostics based on Silicon Photomultipliers
    C. Mester; C. Bruschini; P. Magro; N. Demartines; V. Dunet; E. Grigoriev; A. Konoplyannikov; M. Matter; J.O. Prior; E. Charbon;
    In Proc. OSA,
    July 2011.
    document

  176. A Disdrometer based on Ultra-Fast SPAD Cameras
    A. Berthoud; S. Burri; C. Bruschini; A. Berne; E. Charbon;
    In Proc. OSA,
    July 2011.
    document

  177. Ultra Compact and Low-power TDC and TAC Architectures for Highly-Parallel Implementation in Time-Resolved Image Sensors
    D. Stoppa; F. Borghetti; J. Richardson; R. Walker; R. K. Henderson; M. Gersbach; E. Charbon;
    In Proc. International Workshop on ADC Modeling, Testing and Data Converter Analysis and Design (IWADC),
    June 2011.
    document

  178. 3D Near-Infrared Imaging Based on a Single-Photon Avalanche Diode Array Sensor
    J. Mata Pavia; M. Wolf; E. Charbon;
    In Proc. SPIE EBO,
    May 2011.
    document

  179. An All-Digital, Time-gated 128x128 SPAD Array for On-chip, Filter-less Fluorescence Detection
    Y. Maruyama; E. Charbon;
    In Proc. IEEE Transducers,
    June 2011.
    document

  180. An All-Digital 128x128 CMOS Optical/Electrical Image Sensor
    Y. Maruyama; E. Charbon;
    In Proc. Intl. Symposium on Microchemistry and Microsystems (ISMM),
    June 2011.
    document

  181. A Time-Gated 128x128 CMOS SPAD Array for on-Chip Fluorescence Detection
    Y. Maruyama; E. Charbon;
    In Proc. Intl. Image Sensor Workshop (IISW),
    June 2011.
    document

  182. A Disdrometer Based on Ultra-fast SPAD Cameras
    A. Berthoud; S. Burri; C. Bruschini; A. Berne; E. Charbon;
    In Proc. Intl. Image Sensor Workshop (IISW),
    June 2011.
    document

  183. Single-photon Avalanche Diodes in sub-100nm Standard CMOS Technologies
    M.A. Karami; H.J. Yoon; E. Charbon;
    In Proc. Intl. Image Sensor Workshop (IISW),
    June 2011.
    document

  184. The Gigavision Camera: A 2Mpixel Image Sensor with 0.56um2 1-T Digital Pixels
    H.J. Yoon; E. Charbon;
    In Proc. Intl. Image Sensor Workshop (IISW),
    June 2011.
    document

  185. 3D Near-infrared Imaging based on a Single-photon Avalanche Diode Array Sensor
    J. Mata Pavia; C. Niclass; C. Favi; M. Wolf; E. Charbon;
    In Proc. Intl. Image Sensor Workshop (IISW),
    June 2011.
    document

  186. A CMOS compatible Ge-on-Si APD operating in proportional and geiger modes at infrared wavelengths
    A. Sammak; M. Aminian; L. Qi; W.B. de Boer; E. Charbon; L.K. Nanver;
    In International Electron Device Meeting (IEDM 2011),
    Washington DC, Dec. 2011.

  187. A New Single-photon Avalanche Diode in 90nm Standard CMOS Technology
    M.A. Karami; M. Gersbach; H.J. Yoon; E. Charbon;
    Optics Express,
    Volume 18, Issue 21, October 2010.
    document

  188. New Ethylene Glycaol-Silane monolayer for Highly-specific DNA Detection onto Silicon Chips
    S. Carrara; A. Cavallini; Y. Maruyama; E. Charbon; G. De Micheli;
    Surface Science Letters,
    Volume 604, Issue 23-24, pp. 71-74, October 2010. DOI: 10.1016/j.susc.2010.08.025
    document

  189. System Trade-Offs in Gamma-Ray Detection Utilizing SPAD Arrays and Scintillators
    M.W. Fishburn; E. Charbon;
    IEEE Trans. Nuclear Science,
    Volume 57, Issue 5, October 2010.
    document

  190. RTS Noise Characterization in Single Photon Avalanche Diodes
    M.A. Karami; E. Charbon;
    IEEE Electron Device Letters,
    Volume 31, Issue 7, July 2010. DOI: 10.1109/LED.2010.2047234
    document

  191. Monolithic Silicon Chip for Immunofluorescence Detection on Single Magnetic Beads
    E.P. Dupont; E. Labonne; C. Vandevyver; U. Lehmann; E. Charbon; M.A.M. Gijs;
    ACS Analytical Chemistry,
    Volume 82, Issue 1, pp. 49-52, January 2010. DOI: 10.1021/ac902241j
    document

  192. SPAD Sensors Come of Age
    E. Charbon; S. Donati;
    Optics and Photonics News (OPN),
    Volume 21, pp. 35-41, February 2010.
    document

  193. Fluorescence lifetime biosensing with DNA microarrays and a CMOS-SPAD imager
    G. Giraud; H. Schulze; Day-Uei Li; T.T. Bachmann; J. Crain; D. Tyndall; J. Richardson; R. Walker; D. Stoppa; E. Charbon; R. Henderson; J. Arlt;
    Biomedical Optics Express,
    Volume 1, Issue 5, pp. 1302-1308, December 2010.
    document

  194. Real-time Fluorescence Lifetime Imaging System with a 32x32 0.13um CMOS Low Dark-count Single-photon Avalanche Diode Array
    Day-Uei Li; J. Arlt; J. Richardson; R. Walker; A. Buts; D. Stoppa; E. Charbon; R. Henderson;
    Optics Express,
    Volume 18, Issue 10, pp. 10257-10269, May 2010.
    document

  195. Radiation-Tolerant CMOS Single-Photon Imagers for Multi-Radiation Detection
    E. Charbon; L. Carrara; C. Niclass; N. Scheidegger; H. Shea;
    In Radiation Effects in Semiconductors: Devices, Circuits, and Systems,
    CRC Press, June 2010. ISBN: 978-1-4398-2694-2.

  196. Nano-metric Single-Photon Detector for Biochemical Chips
    E. Charbon; Y. Maruyama;
    In Nano-Bio-Sensing,
    Dordrecht, Springer, November 2010. ISBN: 978-1-4419-6169-3_7. DOI: 10.1007/978-1-4419-6169-3_7
    document

  197. Single-Photon Imaging in CMOS
    E. Charbon;
    In Proc. SPIE Optics+Photonics Single-Photon Imaging,
    San Diego (CA), August 2010.
    document

  198. High frame-rate TCSPC-FLIM readout system using a SPAD-based image sensor
    M. Gersbach; R. Trimananda; Y. Maruyama; M. Fishburn; D. Stoppa; J. Richardson; R. Walker; R.K. Henderson; E. Charbon;
    In Proc. SPIE Optics+Photonics Single-Photon Imaging,
    San Diego (CA), August 2010.
    document

  199. A new Single-Photon Avalanche Diode in 90nm Standard CMOS Technology
    M.A. Karami; M. Gersbach; E. Charbon;
    In Proc. SPIE Optics+Photonics Single-Photon Imaging,
    San Diego (CA), August 2010.
    document

  200. Uniformity of Concentration Factor and Back Focal Length in Molded Polymer Microlens Arrays
    S. Donati; E. Randone; M. Fathi; J.-H. Lee; E. Charbon; G. Martini;
    In Conference on Lasers and Electro-Optics (CLEO),
    2010.
    document

  201. A Novel Hybrid Imaging System for Simultaneous Fluorescence Molecular Tomography and Magnetic Resonance Imaging
    F. Stucker; C. Baltes; K. Dikaiou; D. Vats; L. Carrara; E. Charbon; J. Ripoli; M. Rudin;
    In Biomedical Optics (BIOMED),
    2010.

  202. Virtual Ways: Efficient Coherence for Architecturally Visible Storage in Automatic Instruction Set Extension
    S. Burri; T. Kluter; P. Brisk; E. Charbon; P. Ienne;
    In Intl. Conference on High Performance Embedded Architectures and Compilers (HiPEAC),
    January 2010.
    document

  203. On Pixel Detection Threshold in the Gigavision Camera
    F. Yang; L. Sbaiz; E. Charbon; S. Susstrunk; M. Vetterli;
    In IS\&T/SPIE Electronic Imaging Meeting,
    January 2010.
    document

  204. Poisson Distributed Noise Generation for Spiking Neural Applications
    K.L. Cameron; T. Clayton; B. Rae; A.F. Murray; R. Henderson; E. Charbon;
    In 2010 IEEE International Symposium on Circuits and Systems (ISCAS 2010),
    Paris (France), June 2010.
    document

  205. Single Plane Illumination Fluorescence Correlation Spectroscopy (SPIM-FCS) using a Single-Photon Avalanche Diode (SPAD) Array
    J. Krieger; J. Buchholz; A. Permus; L. Carrara; E. Charbon; L. Langowski;
    In 13th International Workshop on Fluorescence Correlation Spectroscopy (FCS) and Related Methods,
    Singapore, October 2010.

  206. A quantum imager for intensity correlated photons
    D.L. Boiko; N.J. Gunther; N. Brauer; M. Sergio; C. Niclass; G.B. Beretta; E. Charbon;
    New Journal of Physics,
    Volume 11, pp. 1-7, 2009. 1367-2630/09/013001+07.
    document

  207. On the Application of a Monolithic Array for Detecting Intensity-Correlated Photons Emitted by Different Source Types
    D.L. Boiko; N.J. Gunther; B.N. Benedict; E. Charbon;
    Optics Express,
    Volume 17, Issue 17, pp. 15087-15103, August 2009. doi:10.1364/OE.17.015087.
    document

  208. A Low-Noise Single-Photon Detector Implemented in a 130 nm CMOS Imaging Process
    M. Gersbach; J. Richardson; E. Mazaleyrat; S. Hardillier; C. Niclass; R. Henderson; L. Grant; E. Charbon;
    Solid-State Electronics,
    Volume 53, Issue 7, pp. 803-808, July 2009. doi:10.1016/j.sse.2009.02.014.
    document

  209. Single-Photon Synchronous Detection
    C. Niclass; C. Favi; T. Kluter; F. Monnier; E. Charbon;
    IEEE Journal of Solid-State Circuits,
    Volume 44, Issue 7, pp. 1977-1989, July 2009. ISSN: 0018-9200. DOI: 10.1109/JSSC.2009.2021920
    document

  210. Fast-Fluorescence Dynamics in Nonratiometric Calcium Indicators
    M. Gersbach; D.L. Boiko; C. Niclass; C. Petersen; E. Charbon;
    Optics Letters,
    Volume 34, Issue 3, pp. 362-364, February 2009. doi:10.1364/OL.34.000362.
    document

  211. MPSoC Design using Application-Specific Architecturally Visible Communication
    T. Kluter; P. Brisk; E. Charbon; P. Ienne;
    In LNCS--High Performance Embedded Architectures and Compilers (HIPEAC),
    Berlin/Heidelberg, Springer, January 2009. DOI: 10.1007/978-3-540-92990-1
    document

  212. Actuation and Detection of Magnetic Microparticles in a Bioanalytical Microsystem with Integrated CMOS Chip
    U. Lehmann; M. Sergio; E. P. Dupont; E. Labonne; C. Niclass; E. Charbon; M. A. M. Gijs;
    In Nanosystems Design and Technology,
    Springer Science+Business Media LLC, July 2009. DOI: 10.1007/978-1-4419-0255-9 4
    document

  213. A Single Photon Avalanche Diode Array Fabricated in Deep-Submicron CMOS Technology
    C. Niclass; M. Sergio; E. Charbon;
    In Design Automation and Test in Europe: The Most Influential Papers of 10 years DATE,
    March 2009.

  214. Highly Sensitive Arrays of Nano-sized Single-Photon Avalanche Diodes for Industrial and Bio Imaging
    E. Charbon;
    In Nano-net, 4th International Icst Conference (Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering),
    Berlin Heidelberg, Springer, October 2009. DOI: 10.1007/978-3-642-04850-0_23
    document

  215. The gigavision camera
    Luciano Sbaiz; Feng Yang; Edoardo Charbon; Sabine Susstrunk; Martin Vetterli;
    In Proc. IEEE ICASSP,
    Taipei (Taiwan), IEEE, April 2009.
    document

  216. Image Reconstruction in the Gigavision Camera
    Feng Yang; L. Sbaiz; E. Charbon; S. Susstrunk; Martin Vetterli;
    In IEEE 12th International Conference on Computer Vision, Ninth Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras (OMNIVIS 2009),
    Kyoto (Japan), IEEE, pp. 2212-2219, September 2009.
    document

  217. Hydromon: The First Built-in On-Line Water Quality Monitoring System in a Public Supply Network
    C. Noseda; J. Brand; A. Schnyder; E. Charbon;
    In Distribution Systems Symposium (DSS),
    Reno (CA), August 2009.
    document

  218. A 32x32 50ps Resolution 10 bit Time to Digital Converter Array in 130nm CMOS for Time Correlated Imaging
    J. Richardson; R. Walker; L. Grant; D. Stoppa; F. Borghetti; E. Charbon; M. Gersbach; R.K. Henderson;
    In Proc. IEEE Custom Integrated Circuits Conference (CICC),
    San Jose (CA), IEEE, September 2009. DOI: 10.1109/CICC.2009.5280890
    document

  219. A Parallel 32x32 Time-to-Digital Converter Array Fabricated in a 130nm Imaging CMOS Technology
    M. Gersbach; Y. Maruyama; E. Labonne; J. Richardson; R. Walker; L. Grant; R. K. Henderson; F. Borghetti; D. Stoppa; E. Charbon;
    In IEEE European Solid-State Device Conference (ESSCIRC),
    Athens, Greece, IEEE, pp. 196-199, September 2009. DOI: 10.1109/ESSCIRC.2009.5326021
    document

  220. A 32x32-Pixel Array with In-Pixel Photon Counting and Arrival Time Measurement in the Analog Domain
    D. Stoppa; F. Borghetti; J. Richardson; R. Walker; L. Grant; R.K. Henderson; M. Gersbach; E. Charbon;
    In IEEE European Solid-State Device Conference (ESSCIRC),
    Athens, Greece, IEEE, pp. 204-207, September 2009. DOI: 10.1109/ESSCIRC.2009.5325970
    document

  221. Way Stealing: Cache-assisted Automatic Instruction Set Extensions
    T. Kluter; P. Brisk; P. Ienne; E. Charbon;
    In Proceedings of the 46th Annual Design Automation Conference (DAC),
    San Francisco (CA), IEEE/ACM, September 2009.
    document

  222. A Variable Dynamic Range Single-Photon Imager Designed for Multi-Radiation Tolerance
    L. Carrara; M. Fishburn; C. Niclass; N. Scheidegger; H. Shea; E. Charbon;
    In World of Photonics Congress: EOS Conf. on Frontiers in Electronic Imaging: Single-photon Imaging,
    June 2009.
    document

  223. Random Telegraph Signal in Single-Photon Avalanche Diodes
    M. A. Karami; C. Niclass; E. Charbon;
    In International Image Sensor Workshop (IISW),
    Bergen (Norway), June 2009.
    document

  224. A 32x32 50ps Resolution 10 bit Time to Digital Converter Array in 130nm CMOS for time Correlated Imaging
    J. Richardson; R. Walker; L. Grant; D. Stoppa; F. Borghetti; E. Charbon; M. Gersbach; R.K. Henderson;
    In International Image Sensor Workshop (IISW),
    Bergen (Norway), June 2009.
    document

  225. A 17ps Time-to-digital Converter Implemented in 65nm FPGA Technology
    C. Favi; E. Charbon;
    In IEEE ISFPGA,
    February 2009.
    document

  226. A Gamma, X-ray and High Energy Proton Radiation-Tolerant CMOS Image Sensor for Space Applications
    L. Carrara; C. Niclass; N. Scheidegger; H. Shea; E. Charbon;
    In IEEE Intl. Solid-State Circuits Conference (ISSCC),
    San Francisco (CA), IEEE, February 2009.
    document

  227. Ultrafast single-photon image diagnostics sensor with APD arrays for industrial and Bio applications
    E. Charbon; S. Donati;
    In 17th International Conference on Advanced Laser Technologies (ALT'09),
    Antalya, Turkey, October 2009.
    document

  228. A Single-Photon Avalanche Diode Array for Fluorescence Lifetime Imaging Microscopy
    D.E. Schwartz; E. Charbon; K.L. Shephard;
    IEEE J. Solid State Circuits,
    Volume 43, Issue 11, pp. 2546-2557, November 2008.
    document

  229. A 128x128 Single-Photon Image Sensor with Column-level 10-bit Time-to-Digital Converter Array
    C. Niclass; C. Favi; T. Kluter; M.A. Gersbach; E. Charbon;
    IEEE J. Solid State Circuits,
    Volume 43, Issue 12, pp. 2977-2989, December 2008.
    document

  230. CMOS single-photon systems for bioimaging applications
    E. Charbon;
    In Biophotonics, biological and medical physics, biomedical engineering,
    Berlin, Springer Verlag, 2008. ISBN 978-3-540-76779-4.
    document

  231. A single photon detector implemented in a 130nm CMOS imaging process
    M.A. Gershbach; C. Niclass; E. Charbon; J. Richardson; R. Henderson; L. Grant;
    In Proc. 38th European solid state device research conference (ESSDERC),
    Edinburgh, IEEE, pp. 270-273, September 2008.
    document

  232. Single-photon synchronous detection
    C. Niclass; C. Favi; T. Kluter; F. Monnier; E. Charbon;
    In Proc. 38th European solid state circuits conference (ESSCIRC),
    Edinburgh, IEEE, pp. 114-117, September 2008.
    document

  233. Speculative DMA for architecturally visible storage in instruction set extensions
    T. Kluter; P.H. Brisk; P. Ienne; E. Charbon;
    In Proc. int. conf. on hardware-software codesign and system synthesis (CODES+ISSS),
    Atlanta, ACM SIGBED, pp. 1-6, 2008.
    document

  234. High Speed CMOS Imaging: Four Years Later
    E. Charbon;
    In Proc. 9th Intl. Conference Solid-State IC Technology (ICSICT),
    Beijing, IEEE, pp. 1005-1008, October 2008.
    document

BibTeX support

Last updated: 27 Dec 2018