dr. M. Babaie

Assistant Professor
Electronic Circuits and Architectures (ELCA), Department of Microelectronics

PhD thesis (Jun 2016): Power Efficient RF/mm-wave Oscillators and Power Amplifiers for Wireless Applications
Promotor: Bogdan Staszewski

Expertise: RF circuits

Themes: Autonomous sensor systems, XG - Next Generation Sensing and Communication

Biography

Masoud Babaie received the B.Sc. (Hons.) and M.Sc. degrees in electrical engineering from the Amirkabir University of Technology, Tehran, Iran, and the Sharif University of Technology, Tehran, in 2004 and 2006, respectively, and the Ph.D. (cum laude) degree from the Delft University of Technology, Delft, The Netherlands, in 2016.

He joined the Kavoshcom Research and Development Group, Tehran, in 2006, where he was involved in designing wireless communication systems. He was appointed a CTO of the company from 2009 to 2011. He was consulting for RF group of TSMC, Hsinchu, Taiwan, in 2013-2015, designing 28-nm All-Digital PLL and Bluetooth Low Energy transceiver chips. From 2014 to 2015, he was a Visiting Scholar Researcher with Berkeley Wireless Research Center, Berkeley, CA, USA, with the Group of Prof. A. Niknejad. In 2016, he joined theDelft University of Technology, where he is currently a tenured Assistant Professor. He has co-authored one book, two book chapters, 11 patents, and over 40 technical publication. His current research interests include analog and RF/millimeter-wave integrated circuits and systems for wireless communications and cryogenic electronics for quantum computation.

Dr. Babaie has been a Committee Member of Student Research Preview (SRP) of the IEEE International Solid-State Circuits Conference (ISSCC) since 2017 and will join as a technical program committee of the IEEE European Solid-State Circuits Conference (ESSCIRC) from 2020. He was a co-recipient of the 2015–2016 IEEE Solid-State Circuits Society Pre-Doctoral Achievement Award, and the 2019 IEEE ISSCC Best Demo Award. In 2019, he received the Veni award from the Netherlands Organization for Scientific Research (NWO).

EE1C11 Linear Circuits A

Circuit theory course for first year EE students, Part 1

EE1C21 Linear Circuits B

Circuit theory course for first year EE students, Part 2

EE4605 Integrated Circuits and Systems for Wireless Applications

Design and analysis of typical RF IC building blocks in a wireless transceiver

EE4615 Digital IC Design II

Designing digital CMOS circuit such as frequency dividers and time-to-digital (TDC) circuits

ET4371 Advanced Wireless Transceivers (Digital RF)

Digital RF/Microwave System, Digital-Passive, All-digital RF synthesizers, transmitters and receivers

ET4600 Wireless Concepts and Systems

Basic concepts of RF design, such as noise, nonlinearity, Impedance Matching, Analog/Digital Modulation, Pulse-shaping, Mixer, Oscillator, Link-budget, Transmitter/Receiver Architectures

WAtt LEvel transmitters at mm-waves

The WhALE project targets, employing complementary expertise in the field of electromagnetics, system integration and integrated circuit design, to develop the next generation of mmwave transmitters.

Digitally Dominant Analog Blocks for Ultra-Low-Power Wireless Sensor Network

All-digital phase-locked loops, inductor/capacitor-based DC-DC switching converters

  1. Impact of Classical Control Electronics on Qubit Fidelity
    van Dijk, Jeroen PG; Kawakami, Erika; Schouten, Raymond N; Veldhorst, Menno; Vandersypen, Lieven MK; Babaie, Masoud; Charbon, Edoardo; Sebastiano, Fabio;
    Physical Review Applied,
    Volume 12, Issue 4, pp. 044054, 2019.

  2. A supply pushing reduction technique for LC oscillators based on ripple replication and cancellation
    Chen, Yue; Liu, Yao-Hong; Zong, Zhirui; Dijkhuis, Johan; Dolmans, Guido; Staszewski, Robert Bogdan; Babaie, Masoud;
    IEEE Journal of Solid-State Circuits,
    Volume 54, Issue 1, pp. 240--252, 2019.

  3. Clock generation
    Pourmousavian, Naser; Siriburanon, Teerachot; Kuo, Feng-Wei; Babaie, Masoud; Staszewski, Robert Bogdan;
    Digitally Enhanced Mixed Signal Systems,
    pp. 255, 2019.

  4. An Ultralow Power Burst-Chirp UWB Radar Transceiver for Indoor Vital Signs and Occupancy Sensing in 40-nm CMOS
    Liu, Yao-Hong; Sheelavant, Sunil; Mercuri, Marco; Mateman, Paul; Babaie, Masoud;
    IEEE Solid-State Circuits Letters,
    Volume 2, Issue 11, pp. 256--259, 2019.

  5. RF CMOS Oscillators for Modern Wireless Applications
    Babaie, M.; Shahmohammadi, M.; Staszewski, R.B.;
    River Publishers, in River Publishers Series in Circuits and Systems Is a Series of Comprehensive Academic and Professional Books Which Focus on Theory and Applications of Circuit and Systems. This Includes Analog and Digital Integrated Circuits, Memory Technologies, System-O, 2019.
    document

  6. Benefits and challenges of designing cryogenic CMOS RF circuits for quantum computers
    Mehrpoo, M; Patra, B; Gong, J; van Dijk, JPG; Homulle, H; Kiene, G; Vladimirescu, A; Sebastiano, F; Charbon, E; Babaie, M; others;
    In 2019 IEEE International Symposium on Circuits and Systems (ISCAS),
    IEEE, pp. 1--5, 2019.

  7. SPINE (SPIN Emulator)-A Quantum-Electronics Interface Simulator
    van Dijk, Jeroen; Vladimirescu, Andrei; Babaie, Masoud; Charbon, Edoardo; Sebastiano, Fabio;
    In 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI),
    IEEE, pp. 23--28, 2019.

  8. Voltage References for the Ultra-Wide Temperature Range from 4.2 K to 300K in 40-nm CMOS
    van Staveren, J; Almudever, C Garc{\'\i}a; Scappucci, G; Veldhorst, M; Babaie, M; Charbon, E; Sebastiano, F;
    In ESSCIRC 2019-IEEE 45th European Solid State Circuits Conference (ESSCIRC),
    IEEE, pp. 37--40, 2019.

  9. Subthreshold Mismatch in Nanometer CMOS at Cryogenic Temperatures
    t Hart, PA; Babaie, M; Charbon, E; Vladimirescu, A; Sebastiano, F;
    In ESSDERC 2019-49th European Solid-State Device Research Conference (ESSDERC),
    IEEE, pp. 98--101, 2019.

  10. A 6.5-GHz Cryogenic All-Pass Filter Circulator in 40-nm CMOS for Quantum Computing Applications
    Ruffino, Andrea; Peng, Yatao; Sebastiano, Fabio; Babaie, Masoud; Charbon, Edoardo;
    In 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    2019.

  11. LC Oscillator Powering Arrangement and Method of Powering an LC Oscillator
    Chen, Yue; Babaie, Masoud;
    December~5 2019. US Patent App. 16/427,933.

  12. Cryo-CMOS Circuits and Systems for Quantum Computing Applications
    Bishnu Patra; Rosario M. Incandela; Jeroen P. G. van Dijk; Harald A. R. Homulle; Lin Song; Mina Shahmohammadi; Robert B. Staszewski; Andrei Vladimirescu; Masoud Babaie; Fabio Sebastiano; Edoardo Charbon;
    IEEE Journal of Solid-State Circuits,
    Volume 53, Issue 1, pp. 1-13, Jan 2018. DOI: 10.1109/JSSC.2017.2737549
    Keywords: ... CMOS technology;Cryogenics;Oscillators;Process control;Quantum computing;Temperature;CMOS characterization;Class-F oscillator;cryo-CMOS;low-noise amplifier (LNA);noise canceling;phase noise (PN);quantum bit (qubit);quantum computing;qubit control;single-photon avalanche diode (SPAD)..

    Abstract: ... A fault-tolerant quantum computer with millions of quantum bits (qubits) requires massive yet very precise control electronics for the manipulation and readout of individual qubits. CMOS operating at cryogenic temperatures down to 4 K (cryo-CMOS) allows for closer system integration, thus promising a scalable solution to enable future quantum computers. In this paper, a cryogenic control system is proposed, along with the required specifications, for the interface of the classical electronics with the quantum processor. To prove the advantages of such a system, the functionality of key circuit blocks is experimentally demonstrated. The characteristic properties of cryo-CMOS are exploited to design a noise-canceling low-noise amplifier for spin-qubit RF-reflectometry readout and a class-F2,3 digitally controlled oscillator required to manipulate the state of qubits.

  13. Cryo-CMOS Circuits and Systems for Quantum Computing Applications
    B. Patra; R. M. Incandela; J. P. G. van Dijk; H. A. R. Homulle; L. Song; M. Shahmohammadi; R. B. Staszewski; A. Vladimirescu; M. Babaie; F. Sebastiano; E. Charbon;
    IEEE Journal of Solid-State Circuits,
    Volume 53, Issue 1, pp. 309-321, Jan 2018. DOI: 10.1109/JSSC.2017.2737549
    Keywords: ... CMOS technology;Cryogenics;Oscillators;Process control;Quantum computing;Temperature;CMOS characterization;Class-F oscillator;cryo-CMOS;low-noise amplifier (LNA);noise canceling;phase noise (PN);quantum bit (qubit);quantum computing;qubit control;single-photon avalanche diode (SPAD).

  14. A 0.5-V 1.6-mW 2.4-GHz fractional-N all-digital PLL for Bluetooth LE with PVT-insensitive TDC using switched-capacitor doubler in 28-nm CMOS
    Pourmousavian, Naser; Kuo, Feng-Wei; Siriburanon, Teerachot; Babaie, Masoud; Staszewski, Robert Bogdan;
    IEEE Journal of Solid-State Circuits,
    Volume 53, Issue 9, pp. 2572--2583, 2018.

  15. An all-digital PLL for cellular mobile phones in 28-nm CMOS with- 55 dBc fractional and- 91 dBc reference spurs
    Kuo, Feng-Wei; Babaie, Masoud; Chen, Huan-Neng Ron; Cho, Lan-Chou; Jou, Chewn-Pu; Chen, Mark; Staszewski, Robert Bogdan;
    IEEE Transactions on Circuits and Systems I: Regular Papers,
    Volume 65, Issue 11, pp. 3756--3768, 2018.

  16. A 4.4 mW-TX, 3.6 mW-RX Fully Integrated Bluetooth Low Energy Transceiver for IoT Applications
    Babaie, Masoud; Ferreira, Sandro Binsfeld; Kuo, Feng-Wei; Staszewski, Robert Bogdan;
    In Hybrid ADCs, Smart Sensors for the IoT, and Sub-1V \& Advanced Node Analog Circuit Design,
    Springer, Cham, 2018.

  17. A co-design methodology for scalable quantum processors and their classical electronic interface
    van Dijk, Jeroen; Vladimirescu, Andrei; Babaie, Masoud; Charbon, Edoardo; Sebastiano, Fabio;
    In 2018 Design, Automation \& Test in Europe Conference \& Exhibition (DATE),
    IEEE, pp. 573--576, 2018.

  18. Towards a scalable quantum computer
    Almudever, Carmen G; Khammassi, Nader; Hutin, Louis; Vinet, Maud; Babaie, Masoud; Sebastiano, Fabio; Charbon, Edoardo; Bertels, Koen;
    In 2018 13th International Conference on Design \& Technology of Integrated Systems In Nanoscale Era (DTIS),
    IEEE, pp. 1--1, 2018.

  19. A 1.33 mW, 1.6 ps rms-Integrated-Jitter, 1.8-2.7 GHz Ring-Oscillator-Based Fractional-N Injection-Locked DPLL for Internet-of-Things Applications
    Gong, Jiang; He, Yuming; Ba, Ao; Liu, Yao-Hong; Dijkhuis, Johan; Traferro, Stefano; Bachmann, Christian; Philips, Kathleen; Babaie, Masoud;
    In 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    IEEE, pp. 44--47, 2018.

  20. Towards Ultra-Low-Voltage and Ultra-Low-Power Discrete-Time Receivers for Internet-of-Things
    Kuo, Feng-Wei; Ferreira, Sandro Binsfeld; Chen, Ron; Cho, Lan-Chou; Jou, Chewn-Pu; Chen, Mark; Babaie, Masoud; Staszewski, Robert Bogdan;
    In 2018 IEEE/MTT-S International Microwave Symposium-IMS,
    IEEE, pp. 1211--1214, 2018.

  21. Characterization and model validation of mismatch in nanometer CMOS at cryogenic temperatures
    van Dijk, JPG; Babaie, M; Charbon, E; Vladimircscu, A; Sebastiano, F; others;
    In 2018 48th European Solid-State Device Research Conference (ESSDERC),
    IEEE, pp. 246--249, 2018.

  22. A Total-Power Radiometer Front End in a 0.25- $mu textm$ BiCMOS Technology With Low $1/f$ -Corner
    S. Malotaux; M. Babaie; M. Spirito;
    IEEE Journal of Solid-State Circuits,
    Volume 52, Issue 9, pp. 2256-2266, Sept 2017. DOI: 10.1109/JSSC.2017.2705659
    Keywords: ... 1/f noise;BiCMOS integrated circuits;Ge-Si alloys;carbon;low noise amplifiers;millimetre wave amplifiers;millimetre wave detectors;radiometers;semiconductor materials;white noise;1/f -noise corner;BiCMOS technology;LNA;NEP;SiGe:C;bandwidth 6 GHz;frequency 56 GHz;heterojunction bipolar transistor;high-sensitivity millimeter-wave total-power radiometer front-end;large area high resistive value load resistor;low noise-equivalent power;low transformation ratio;optimum bias;size 0.25 nm;two cascode stage low-noise amplifier;voltage-driven common-emitter square-law detector;white noise;wideband signal transfer;Antennas;Bandwidth;BiCMOS integrated circuits;Detectors;Radio frequency;Radiometry;Signal to noise ratio;Direct detection;flicker noise;low-noise amplifier (LNA);millimeter-wave (mm-wave);radiometer;square-law detector.

  23. Tuning range extension of a transformer-based oscillator through common-mode Colpitts resonance
    M. Shahmohammadi; M. Babaie; R. B. Staszewski;
    IEEE Trans. on Circuits and Systems I (TCAS-I),,
    Volume 64, Issue 4, pp. 836–846, April 2017. DOI: 10.1109/TCSI.2016.2625199

  24. 60 GHz wideband class E/F 2 power amplifier
    Babaie, Masoud; Staszewski, Robert Bogdan;
    2017.

  25. A Bluetooth low-energy transceiver with 3.7-mW all-digital transmitter, 2.75-mW high-IF discrete-time receiver, and TX/RX switchable on-chip matching network
    Kuo, Feng-Wei; Ferreira, Sandro Binsfeld; Chen, Huan-Neng Ron; Cho, Lan-Chou; Jou, Chewn-Pu; Hsueh, Fu-Lung; Madadi, Iman; Tohidian, Massoud; Shahmohammadi, Mina; Babaie, Masoud; others;
    IEEE Journal of Solid-State Circuits,
    Volume 52, Issue 4, pp. 1144--1162, 2017.

  26. System design of a 2.75-mW discrete-time superheterodyne receiver for Bluetooth low energy
    Ferreira, Sandro Binsfeld; Kuo, Feng-Wei; Babaie, Masoud; Bampi, Sergio; Staszewski, Robert Bogdan;
    IEEE Transactions on Microwave Theory and Techniques,
    Volume 65, Issue 5, pp. 1904--1913, 2017.

  27. Cryogenic CMOS interfaces for quantum devices
    Fabio Sebastiano; Harald A. R. Homulle; Jeroen P. G. van Dijk; Rosario M. Incandela; Bishnu Patra; M. Mehrpoo; Masoud Babaie; Andrei Vladimirescu; Edoardo Charbon;
    In 2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI),
    Vieste, Italy, pp. 59-62, June 2017. DOI: 10.1109/IWASI.2017.7974215
    Keywords: ... CMOS technology;Computers;Cryogenics;Process control;Quantum computing;Semiconductor device modeling;Standards;CMOS;cryo-CMOS;cryogenics;quantum computing;qubits.

    Abstract: ... Quantum computers could efficiently solve problems that are intractable by today's computers, thus offering the possibility to radically change entire industries and revolutionize our lives. A quantum computer comprises a quantum processor operating at cryogenic temperature and an electronic interface for its control, which is currently implemented at room temperature for the few qubits available today. However, this approach becomes impractical as the number of qubits grows towards the tens of thousands required for complex quantum algorithms with practical applications. We propose an electronic interface for sensing and controlling qubits operating at cryogenic temperature implemented in standard CMOS.

  28. Cryo-CMOS Electronic Control for Scalable Quantum Computing: Invited
    Fabio Sebastiano; Harald Homulle; Bishnu Patra; Rosario Incandela; Jeroen van Dijk; Lin Song; Masoud Babaie; Andrei Vladimirescu; Edoardo Charbon;
    In Proceedings of the 54th Annual Design Automation Conference 2017,
    New York, NY, USA, ACM, pp. 13:1--13:6, 2017. DOI: 10.1145/3061639.3072948
    Keywords: ... Cryo-CMOS, cryogenics, device models, error-correcting loop, quantum computation, qubit.

    document

  29. Cryo-CMOS circuits and systems for scalable quantum computing
    Edoardo Charbon; Fabio Sebastiano; Masoud Babaie; Andrei Vladimirescu; Mina Shahmohammadi; R. B. Staszewski; Harald A. R. Homulle; Bishnu Patra; Jeroen P. G. van Dijk; Rosario M. Incandela; Lin Song; Bahador Valizadehpasha;
    In 2017 IEEE International Solid-State Circuits Conference (ISSCC),
    pp. 264-265, Feb 2017. DOI: 10.1109/ISSCC.2017.7870362
    Keywords: ... CMOS integrated circuits;logic circuits;quantum computing;cryo-CMOS circuits;error-correcting loop;quantum algorithm;quantum bits arrays;quantum coherence loss;qubit states;room-temperature controller;scalable quantum computing;state-of-the-art quantum processors;unprecedented computation power;Cryogenics;Oscillators;Program processors;Quantum computing;Semiconductor device modeling;Substrates;Temperature sensors.

    Abstract: ... In Paper 15.5, Delft University of Technology, EPFL, and Intel present building blocks for a scalable CMOS interface to solid-state quantum processors with a projected efficiency of 200�W/qubit. The circuits include an analog noise-canceled 1.2GHz LNA with 28dB gain, a 6.2GHz class-F local oscillator with better than �145dBc/Hz phase noise at 10MHz offset, a 12µm SPAD with 0.1Hz dark count rate at 2V excess bias, and digital logic, all designed using ad hoc deep-cryogenic models.

  30. 15.5 Cryo-CMOS circuits and systems for scalable quantum computing
    E. Charbon; F. Sebastiano; M. Babaie; A. Vladimirescu; M. Shahmohammadi; R. B. Staszewski; H. A. R. Homulle; B. Patra; J. P. G. van Dijk; R. M. Incandela; L. Song; B. Valizadehpasha;
    In 2017 IEEE International Solid-State Circuits Conference (ISSCC),
    pp. 264-265, Feb 2017. DOI: 10.1109/ISSCC.2017.7870362
    Keywords: ... Cryogenics;Oscillators;Program processors;Quantum computing;Semiconductor device modeling;Substrates;Temperature sensors.

  31. Cryo-CMOS electronic control for scalable quantum computing
    Sebastiano, Fabio; Homulle, Harald; Patra, Bishnu; Incandela, Rosario; van Dijk, Jeroen; Song, Lin; Babaie, Masoud; Vladimirescu, Andrei; Charbon, Edoardo;
    In Proceedings of the 54th Annual Design Automation Conference 2017,
    pp. 1--6, 2017.

  32. Cryogenic CMOS interfaces for quantum devices
    Sebastiano, Fabio; Homulle, Harald AR; van Dijk, Jeroen PG; Incandela, Rosario M; Patra, Bishnu; Mehrpoo, Mohammadreza; Babaie, Masoud; Vladimirescu, Andrei; Charbon, Edoardo;
    In 2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI),
    IEEE, pp. 59--62, 2017.

  33. A 350-mV 2.4-GHz quadrature oscillator with nearly instantaneous start-up using series LC tanks
    Chen, Yue; Babaie, Masoud; Staszewski, Robert Bogdan;
    In 2017 IEEE Asian Solid-State Circuits Conference (A-SSCC),
    IEEE, pp. 104--108, 2017.

  34. Transformer based impedance matching network and related power amplifier, ADPLL and transmitter based thereon
    Babaie, Masoud; Staszewski, Robert Bogdan;
    November~28 2017. US Patent 9,831,847.

  35. Radio frequency oscillator
    Shahmohammadi, Mina; Babaie, Masoud; Staszewski, Robert Bogdan;
    November~9 2017. US Patent App. 15/659,322.

  36. Resonator circuit
    Shahmohammadi, Mina; Babaie, Masoud; Staszewski, Robert Bogdan;
    December~21 2017. US Patent App. 15/659,204.

  37. A 1/f Noise Upconversion Reduction Technique for Voltage-Biased RF CMOS Oscillators
    M. Shahmohammadi; M. Babaie; R. B. Staszewski;
    IEEE Journal of Solid-State Circuits,
    Volume 51, Issue 11, pp. 2610-2624, Nov 2016. DOI: 10.1109/JSSC.2016.2602214
    Keywords: ... 1/f noise;CMOS integrated circuits;LC circuits;flicker noise;harmonics suppression;interference suppression;phase noise;radiofrequency oscillators;1/f noise upconversion reduction technique;CMOS technology;class-D oscillators;class-F oscillators;common mode excitations;current harmonics;differential mode excitations;equivalent resistance;flicker noise upconversion;inductor based tanks;phase noise;tank current;transformer based tanks;voltage biased RF CMOS oscillators;Capacitors;Harmonic analysis;Oscillators;Radio frequency;Resistors;Resonant frequency;Transistors;Class-D oscillator;class-F oscillator;digitally controlled oscillator;flicker noise;flicker noise upconversion;impulse sensitivity function (ISF);phase noise (PN);voltage-biased RF oscillator.

  38. A Fully Integrated Bluetooth Low-Energy Transmitter in 28 nm CMOS With 36\% System Efficiency at 3 dBm
    M. Babaie; F. W. Kuo; H. N. R. Chen; L. C. Cho; C. P. Jou; F. L. Hsueh; M. Shahmohammadi; R. B. Staszewski;
    IEEE Journal of Solid-State Circuits,
    Volume 51, Issue 7, pp. 1547-1565, July 2016. DOI: 10.1109/JSSC.2016.2551738
    Keywords: ... Bluetooth;CMOS digital integrated circuits;MOSFET circuits;constant current sources;digital phase locked loops;low-power electronics;oscillators;radio transmitters;radiofrequency integrated circuits;radiofrequency power amplifiers;1/f noise reduction;Bluetooth low-energy mode;CMOS transistors;all-digital PLL;class-E-F2 switching power amplifier;digitally controlled oscillator;direct DCO data modulation;efficiency 36 percent;energy-hungry RF circuits;fully integrated Bluetooth low-energy transmitter architecture;metal density;power 3.6 mW;power 5.5 mW;sampling rate reduction;size 28 nm;supply voltage reduction;switching current sources;threshold voltage;ultra-low power radios;CMOS integrated circuits;Inductors;Oscillators;Q-factor;Radio frequency;Radio transmitters;Switches;All-digital PLL;Bluetooth Low-Energy;Internet of Things (IoT);class-E/F 2 power amplifier;low-power transmitter;low-voltage oscillator;switching current-source oscillator.

  39. A 60 GHz Frequency Generator Based on a 20 GHz Oscillator and an Implicit Multiplier
    Z. Zong; M. Babaie; R. B. Staszewski;
    IEEE Journal of Solid-State Circuits,
    Volume 51, Issue 5, pp. 1261-1273, May 2016. DOI: 10.1109/JSSC.2016.2528997
    Keywords: ... CMOS digital integrated circuits;field effect MIMIC;frequency multipliers;millimetre wave frequency convertors;millimetre wave oscillators;phase noise;FoM;PN performance;digital CMOS process;extraction techniques;figure-of-merit;frequency 20 GHz;frequency 57.8 GHz;frequency 60 GHz;frequency generator;frequency tuning range;implicit multiplier;local oscillator signal;mm-wave frequency generation technique;phase detection;phase noise performance;phase-locked loop;power efficiency;size 40 nm;third-harmonic boosting techniques;Boosting;Frequency conversion;Harmonic analysis;Oscillators;Phase locked loops;Power demand;Resonant frequency;60 GHz;60 GHz;PLL;frequency divider;harmonic boosting;harmonic extraction;implicit multiplier;mm-wave;oscillator;phase noise (PN);transformer.

  40. A Bluetooth low-energy (BLE) transceiver with TX/RX switchable on-chip matching network, 2.75mW high-IF discrete-time receiver, and 3.6mW all-digital transmitter
    F. W. Kuo; S. B. Ferreira; M. Babaie; R. Chen; L. c. Cho; C. P. Jou; F. L. Hsueh; G. Huang; I. Madadi; M. Tohidian; R. B. Staszewski;
    In 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits),
    pp. 1-2, June 2016. DOI: 10.1109/VLSIC.2016.7573480
    Keywords: ... Bluetooth;Internet of Things;MOS integrated circuits;band-pass filters;oscillators;phase locked loops;radio transceivers;radio transmitters;1-pin direct antenna connection;Bluetooth LE;Bluetooth low-energy transceiver;CMOS;Internet-of-Things;IoT;MOS devices;TX/RX switchable on-chip matching network;The receiver;all-digital PLL;all-digital transmitter;discrete-time architecture;high-IF discrete-time receiver;integrated on-chip matching network;multirate charge-sharing bandpass filters;power 2.75 mW;power 3.6 mW;power consumption;size 28 nm;switched-current-source digitally controlled oscillator;transmitter;ultra-low-power transceiver;Band-pass filters;Capacitors;Gain;Power demand;Switches;System-on-chip;Transceivers.

  41. Power Efficient RF/mm-wave Oscillators and Power Amplifiers for Wireless Applications
    M. Babaie;
    PhD thesis, Delft University of Technology, http://doi.org/10.4233/uuid:456a2f0e-529d-4bd8-91e0-4dba4f623f0f, 6 2016. Promotor: R.B. Staszewski.

  42. An Ultra-Low Phase Noise Class-F 2 CMOS Oscillator With 191 dBc/Hz FoM and Long-Term Reliability
    M. Babaie; R. B. Staszewski;
    IEEE Journal of Solid-State Circuits,
    Volume 50, Issue 3, pp. 679-692, March 2015.

  43. A fully integrated 28nm Bluetooth Low-Energy transmitter with 36% system efficiency at 3dBm
    F. W. Kuo; M. Babaie; R. Chen; K. Yen; J. Y. Chien; L. Cho; F. Kuo; C. P. Jou; F. L. Hsueh; R. B. Staszewski;
    In ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC),
    pp. 356-359, Sept 2015.

  44. 25.4 A 1/f noise upconversion reduction technique applied to Class-D and Class-F oscillators
    M. Shahmohammadi; M. Babaie; R. B. Staszewski;
    In 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers,
    pp. 1-3, Feb 2015.

  45. A 60 GHz 25% tuning range frequency generator with implicit divider based on third harmonic extraction with 182 dBc/Hz FoM
    Z. Zong; M. Babaie; R. B. Staszewski;
    In 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 279-282, May 2015.

  46. A 0.5V 0.5mW switching current source oscillator
    M. Babaie; M. Shahmohammadi; R. B. Staszewski;
    In 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 183-186, May 2015.

  47. A wideband 60 GHz class-E/F2 power amplifier in 40nm CMOS
    M. Babaie; R. B. Staszewski; L. Galatro; M. Spirito;
    In 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 215-218, May 2015.

  48. A 12mW all-digital PLL based on class-F DCO for 4G phones in 28nm CMOS
    Feng-Wei Kuo; R. Chen; K. Yen; Hsien-Yuan Liao; Chewn-Pu Jou; Fu-Lung Hsueh; M. Babaie; R. B. Staszewski;
    In 2014 Symposium on VLSI Circuits Digest of Technical Papers,
    pp. 1-2, June 2014.

  49. A Class-F CMOS Oscillator
    M. Babaie; R. B. Staszewski;
    IEEE Journal of Solid-State Circuits,
    Volume 48, Issue 12, pp. 3120-3133, Dec 2013.

  50. Ultra-low phase noise 7.2 #x2013;8.7 Ghz clip-and-restore oscillator with 191 dBc/Hz FoM
    M. Babaie; A. Visweswaran; Z. He; R. B. Staszewski;
    In 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 43-46, June 2013.

  51. A study of RF oscillator reliability in nanoscale CMOS
    M. Babaie; R. B. Staszewski;
    In 2013 European Conference on Circuit Theory and Design (ECCTD),
    pp. 1-4, Sept 2013.

  52. Third-harmonic injection technique applied to a 5.87-to-7.56GHz 65nm CMOS Class-F oscillator with 192dBc/Hz FOM
    M. Babaie; R. B. Staszewski;
    In 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers,
    pp. 348-349, Feb 2013.

BibTeX support

Last updated: 8 Jun 2020