dr. T. Costa

Assistant Professor
Bioelectronics (BE), Department of Microelectronics

Expertise: Analog and mixed-signal CMOS circuit design for biomedical applications, including electroceuticals, implantable devices and lab-on-a-chip; microfabrication methods for monolithic integration of transducers in CMOS for biomedical applications.

Themes: Health and Wellbeing

Biography

Tiago Costa (S’10-M’15) was born in Torres Vedras, Portugal, in 1985. He received the B.Sc. and M.Sc. in electronic engineering from Instituto Superior Técnico - University of Lisbon, Portugal, in 2006 and 2008, respectively, and the Ph.D. in electrical and computer engineering from the same university, in 2014. His PhD research was developed in the signal processing group at INESC-ID, Lisbon, Portugal. In 2015 he joined the Bioelectronic Systems Laboratory at Columbia University, USA, as a postdoctoral research scientist. As of October 2019, he will start a new position as assistant professor at the Bioelectronics group at Delft University of Technology, The Netherlands.

His research interests focus on developing highly miniaturized devices for emerging biomedical applications, such as electroceuticals, implantable devices for wireless physiological monitoring and lab-on-chip, by combining analog and mixed-signal CMOS circuit design with microfabricated and monolithically integrated transducers.

Currently, he is pursuing the development of new devices for minimally invasive and highly targeted interfaces to the nervous system for the next generation of electroceuticals.

Publications

  1. A CMOS 2D Transmit Beamformer with Integrated PZT Ultrasound Transducers for Neuromodulation
    T. Costa; C. Shi; K. Tien; K.L. Shepard;
    In Proc. 2019 IEEE Custom Integrated Circuits Conference (CICC'2019),
    Austin, TX, USA, IEEE, pp. 1-4, 21-24 April 2019. DOI: 10.1109/CICC.2019.8780236
    document

  2. Monolithic Integration of Micron-scale Piezoelectric Materials with CMOS for Biomedical Applications
    C. Shi; T. Costa; J. Elloian; K.L. Shepard;
    In Proc. 2018 IEEE International Electron Devices Meeting (IEDM'2018),
    San Francisco, CA, USA, IEEE, pp. 4.5.1-4.5.4, Dec. 1-5 2018. DOI: 10.1109/IEDM.2018.8614632
    document

  3. PDMS Microlenses for Optical Biopsy Microsystems
    J. F. Ribeiro; A. C. Costa; J. M. Gomes; C. G. Costa; S. Goncalves; R. F. Wolffenbuttel; H. Correia;
    IEEE Transactions on Industrial Electronics,
    Volume 64, Issue 12, pp. 9683 - 9690, 2017. DOI: 10.1109/TIE.2017.2716874
    Keywords: ... Biomedical optical imaging;Biopsy;Lenses;Light emitting diodes;Microoptics;Optical device fabrication;Optical imaging;Biomedical imaging;Microlens;Optic microsystem;Optical biopsy;Polydimethylsiloxane (PDMS).

  4. A CMOS Front-End with Integrated Magnetoresistive Sensors for Biomolecular Recognition Detection Applications
    Costa, T.; Cardoso, F.A.; Germano, J.; Freitas, P.P.; Piedade, M.S.;
    IEEE Transactions on Biomedical Circuits and Systems,
    Volume 11, Issue 5, pp. 988-1000, 2017. DOI: 10.1109/TBCAS.2017.2743685

  5. A 45° saw-dicing process applied to a glass substrate for wafer-level optical splitter fabrication for optical coherence tomography
    M.J. Maciel; C.G. Costa; M.F. Silva; S.B. Gonçalves; A.C. Peixoto; A.F Ribeiro; R.F. Wolffenbuttel; J.H. Correia;
    Journal of Micromechanics and Microengineering,
    Volume 26, Issue 8, pp. 084001, 2016.

  6. A wafer-level miniaturized Michelson interferometer on glass substrate for optical coherence tomography applications
    M.J. Maciel; C.G. Costa; M.F. Silva; A.C. Peixoto; R.F. Wolffenbuttel; J.H. Correia;
    Sensors and Actuators A: Physical,
    Volume 242, pp. 210-216, 2016.

  7. Optical microsystem design and fabrication for medical image magnification
    C.G. Costa; J.M. Gomes; R.F. Wolffenbuttel; J.H. Correia;
    Microsystem Technologies,
    Volume 22, Issue 7, pp. 1747-1755, 2016.

  8. Semi-quantitative method for streptococci magnetic detection in raw milk
    Duarte, C.; Costa, T.; Carneiro, C.; Soares, R.; Jitariu, A.; Cardoso, S.; Piedade, M.; Bexiga, R.; Freitas, P.;
    Biosensors,
    Volume 6, Issue 2, 2016. DOI: 10.3390/bios6020019

  9. Design and optimization of a CMOS front-end for magnetoresistive sensor based biomolecular recognition detection
    Costa, T.; Germano, J.; Piedade, M.S.; Cardoso, F.A.; Freitas, P.P.;
    In Proceedings - IEEE International Symposium on Circuits and Systems,
    pp. 2859-2862, 2016. DOI: 10.1109/ISCAS.2016.7539189

  10. MagCMOS
    Costa, T.; Cardoso, F.A.; Piedade, M.S.; Freitas, P.P.;
    In Handbook of Bioelectronics: Directly Interfacing Electronics and Biological Systems,
    Cambridge University Press, 2015. DOI: 10.1017/CBO9781139629539.015

  11. Frequency independent patterns from double shell lenses fed by leaky wave feeders
    O. Yurduseven; J. R. Costa; C. A. Fernandes; A. Neto;
    In European conference on Antennas and Propagation (EuCAP),
    Lisbon, Portugal, April 2015.

  12. Design and fabrication of an endomicroscopic imaging module for minimally invasive medical devices
    C.G. Costa; J.S. Gomes; R.F. Wolffenbuttel; J.H.G. Correia;
    In R Brama; JL Sánchez-Rojas (Ed.), Proceedings of SPIE Smart Sensors, Actuators, and MEMS VII; and Cyber Physical Systems, vol. 9517,
    SPIE, pp. 95170L-1-9517, 2015.

  13. Imaging amplification for minimally invasive medical devices
    J.H. Correia; J.M. Gomes; G.C. Costa; R.F. Wolffenbuttel; J.P. Carmo;
    In M Paranjape; MA Pavanello (Ed.), Proceedings of the 30th Symposium on Microelectronics Technology and Devices (SBMicro),
    IEEE, pp. 1-4, 2015.

  14. NIR micro beam-splitter by saw-dicing of glass substrate for optical coherence tomography
    M.J. Maciel; C.G. Costa; A.C. Peixoto; R.F. Wolffenbuttel;
    In G Urban; J Wöllenstein; J Kieninger (Ed.), Procedia Engineering (Proceedings of the 29th Eurosensors Conference), vol. 120,
    Elsevier, pp. 807-810, 2015.

  15. Design and wafer-level fabrication of a micro beam splitter for application in optical coherence tomography
    M.J. Maciel; M.F. Silva; A.C. Peixoto; G.C. Costa; R.F. Wolffenbuttel; J.H. Correia;
    In RJ Wiegerink; D Tsoukalas; U. Staufer (Ed.), Proceedings of the 26th Micromechanics and Microsystems Europe workshop,
    2015.

  16. Live demonstration: A CMOS ASIC for precise reading of a Magnetoresistive sensor array for NDT
    Caetano, D.M.; Piedade, M.; Graca, J.; Fernandes, J.; Rosado, L.; Costa, T.;
    In Proceedings - IEEE International Symposium on Circuits and Systems,
    pp. 1906, 2015. DOI: 10.1109/ISCAS.2015.7169039

  17. A neuronal signal detector for biologically generated magnetic fields
    Costa, T.; Piedade, M.S.; Germano, J.; Amaral, J.; Freitas, P.P.;
    IEEE Transactions on Instrumentation and Measurement,
    Volume 63, Issue 5, pp. 1171-1180, 2014. DOI: 10.1109/TIM.2013.2296417

  18. Optical filter for providing the required illumination to enable narrow band imaging
    Silva, MF; Rodrigues, JA; Oliveira, MJ; Fernandes, AR; Pereira, S; Costa, CG; Ghaderi, M; Ayerden, P; Goncalves, LM; De Graaf, G; others;
    In Procedia Engineering (Proceedings of the 28th Eurosensors Conference), vol. 87,
    Elsevier, pp. 1414-1417, 2014.

  19. Optical filter for providing the required illumination to enable narrow band imaging
    M.F. Silva; J.A. Rodrigues; M.J. Oliveira; A.R. Fernandes; S. Pereira; C.G. Costa; M. Ghaderi; P. Ayerden; L.M. Goncalves; G. de Graaf; R.F. Wolffenbuttel; J.H. Correia;
    In Procedia Engineering (Proceedings of the 28th Eurosensors Conference), vol. 87,
    Elsevier, pp. 1414-1417, 2014.

  20. Integration of TMR sensors in silicon microneedles for magnetic measurements of neurons
    Amaral, J.; Pinto, V.; Costa, T.; Gaspar, J.; Ferreira, R.; Paz, E.; Cardoso, S.; Freitas, P.P.;
    IEEE Transactions on Magnetics,
    Volume 49, Issue 7, pp. 3512-3515, 2013. DOI: 10.1109/TMAG.2013.2239274

  21. Measuring brain activity with magnetoresistive sensors integrated in micromachined probe needles
    Amaral, J.; Gaspar, J.; Pinto, V.; Costa, T.; Sousa, N.; Cardoso, S.; Freitas, P.;
    Applied Physics A: Materials Science and Processing,
    Volume 111, Issue 2, pp. 407-412, 2013. DOI: 10.1007/s00339-013-7621-7

  22. CMOS instrumentation system for matrix-based magnetoresistive biosensors
    Costa, T.; Piedade, M.S.; Cardoso, F.A.; Freitas, P.P.;
    In Conference Record - IEEE Instrumentation and Measurement Technology Conference,
    pp. 1315-1318, 2013. DOI: 10.1109/I2MTC.2013.6555626

  23. An instrumentation system based on magnetoresistive sensors for neuronal signal detection
    Costa, T.; Piedade, M.S.; Germano, J.; Amaral, J.; Freitas, P.P.;
    In Conference Record - IEEE Instrumentation and Measurement Technology Conference,
    pp. 1074-1077, 2013. DOI: 10.1109/I2MTC.2013.6555579

  24. Integration of magnetoresistive biochips on a CMOS circuit
    Cardoso, F.A.; Costa, T.; Germano, J.; Cardoso, S.; Borme, J.; Gaspar, J.; Fernandes, J.R.; Piedade, M.S.; Freitas, P.P.;
    IEEE Transactions on Magnetics,
    Volume 48, Issue 11, pp. 3784-3787, 2012. DOI: 10.1109/TMAG.2012.2198449

  25. An ultra-low noise current source for magnetoresistive biosensors biasing
    Costa, T.; Piedade, M.S.; Santos, M.;
    In 2012 IEEE Biomedical Circuits and Systems Conference: Intelligent Biomedical Electronics and Systems for Better Life and Better Environment, BioCAS 2012 - Conference Publications,
    pp. 73-76, 2012. DOI: 10.1109/BioCAS.2012.6418507

  26. A CMOS circuit for precise reading of matrix addressed magnetoresistive biosensors
    Costa, T.; Piedade, M.S.; Fernandes, J.R.;
    In 2011 IEEE Biomedical Circuits and Systems Conference, BioCAS 2011,
    pp. 389-392, 2011. DOI: 10.1109/BioCAS.2011.6107809

  27. Diode/magnetic tunnel junction cell for fully scalable matrix-based biochip
    F.A. Cardoso; H.A. Ferreira; J.P. Conde; V. Chu; P.P. Freitas; D. Vidal; J. Germano; L. Sousa; M.S. Piedade; B.A. Costa; J.M. Lemos;
    J. Appl. Phys.,
    2006.

  28. Architecture of a Portable System Based on a Biochip for DNA Recognition
    M. Piedade; L. Sousa; J. Germano; J. Lemos; B. Costa; P. Freitas; H. Ferreira; F. Cardoso; D. Vidal;
    In Proc. of the XX Conference on Design of Circuits and Integrated Systems,
    2005.
    document

  29. Temperature Simulation and Control of a Biochip for DNA Analysis
    B.A. Costa; J.M. Lemos; M.S. Piedade; L. Sousa; P.P. Freitas; F.A. Cardoso; D. Vidal;
    In 44th IEEE Conference on Decision and Control,
    2005.

  30. X-ray detector based on a bulk micromachined photodiode combined with a scintillating crystal
    J.G. Rocha; C.G.J. Schabmueller; N.F. Ramos; S. Lanceros-Mendez; M.F. Costa; A.G.R. Evans; R.F. Wolffenbuttel; J.H. Correia;
    Journal of Micromechanics and Microengineering,
    Volume 13, Issue 4, pp. 45-50, 2003.

BibTeX support

Last updated: 31 Oct 2019