MSc Marta Saccher

PhD student
Electronic Components, Technology and Materials (ECTM), Department of Microelectronics

Expertise: CMUT, implantable devices, neuromodulation

Themes: Health and Wellbeing

Biography

Marta Saccher was born in Trieste, Italy in 1995. She received her BSc degree in Biomedical Engineering, in 2017, from Polytechnic University of Milan. She then moved to Delft to pursue her MSc studies in Biomedical Engineering at the Faculty of Mechanical, Maritime and Materials Engineering. She joined the ECTM group of TU Delft in 2018 and moved to Eindhoven to work on her thesis on MEMS ultrasound for implantable medical devices at Philips Research. In 2019, she obtained her MSc degree cum laude and later joined the department of Biomedical Instrumentation and Signal Processing at Aarhus University as a postgraduate student.

She is currently working to pursue a PhD degree at the ECTM group of TU Delft in the framework of the European project Moore4Medical, which aims to create open technology platforms for medical devices. She is currently based at Philips Research in Eindhoven, where she is investigating the use of capacitive micromachined ultrasonic transducers (CMUTs) for implantable medical devices, to be used as means for both power transfer and ultrasound modulation of the nervous system.

Projects history

Moore4Medical

Accelerate Innovation in emerging medical devices with open technology platforms

  1. Modeling and Characterization of Pre-Charged Collapse-Mode CMUTs
    M. Saccher; S. Kawasaki; J. H. Klootwijk; R. Van Schaijk; R. Dekker;
    IEEE Open Journal of Ultrasonics, Ferroelectrics, and Frequency Control,
    Volume 3, pp. 14-28, 2023. DOI: 10.1109/OJUFFC.2023.3240699

  2. An Ultrasonically Powered System Using an AlN PMUT Receiver for Delivering Instantaneous mW-Range DC Power to Biomedical Implants
    Amin Rashidi; Marta Saccher; Cyril Baby Karuthedath; Abhilash Thanniyil Sebastian; Alessandro Stuart Savoia; Frederik Lavigne; Frederic Stubbe; Ronald Dekker; Vasiliki Giagka;
    In In Proc. IEEE Int. Ultrasonics Symposium (IUS) 2023,
    IEEE, pp. 1-4, 2023.
    document

  3. Phase Distribution Efficiency of cm-Scale Ultrasonically Powered Receivers
    Marta Saccher; Amin Rashidi; Alessandro Stuart Savoia; Vasiliki Giagka; Ronald Dekker;
    In In Proc. IEEE Int. Ultrasonics Symposium (IUS) 2023,
    2023.
    document

  4. A Comparative Study of Si3N4 and Al2O3 as Dielectric Materials for Pre-Charged Collapse-Mode CMUTs
    Marta Saccher; Rob van Schaijk; Shinnosuke Kawasaki; Johan H. Klootwijk and Amin Rashidi; Vasiliki Giagka; Alessandro Stuart Savoia; Ronald Dekker;
    In in Proc. IEEE Int. Ultrasonics Symposium (IUS) 2023,
    2023.
    document

  5. Evaluating the Influence of PMUT Mechanical Support Properties on Power Conversion Efficiency in Ultrasonically Powered Implants
    Alessandro Stuart Savoia; Domenico Giusti; Carlo Prelini; Alberto Leotti; Marta Saccher; Amin Rashidi; Vasiliki Giagka; Marco Ferrera;
    In in Proc. IEEE Int. Ultrasonics Symposium (IUS) 2023,
    2023.

  6. Focused ultrasound neuromodulation on a multiwell MEA
    M. Saccher; S. Kawasaki; Proietti Onori, M.; van Woerden, G. M.; V. Giagka; R. Dekker;
    Bioelectronic Medicine,
    Volume 8, Issue 2, pp. 1-10, January 2022. DOI: 10.1186/s42234-021-00083-7
    document

  7. Focused ultrasound neuromodulation on a multiwell MEA
    Marta Saccher; Shinnosuke Kawasaki; Martina Proietti Onori; Geeske M. van Woerden; Vasiliki Giagka; Ronald Dekker;
    Bioelectronic Medicine,
    Volume 8, 2022. DOI: 10.1186/s42234-021-00083-7

  8. Bulk Acoustic Wave Based Microfluidic Particle Sorting With Capacitive Micromachined Ultrasonic Transducers
    Shinnosuke Kawasaki; Jia-Jun Yeh; Marta Saccher; Jian Li; Ronald Dekker;
    In 35th Intl. Conf. on Micro Electro Mechanical Systems (MEMS 2022),
    2022. DOI: 10.1109/MEMS51670.2022.9699807

  9. Time-efficient low power time/phase-reversal beamforming for the tracking of ultrasound implantable devices
    M. Saccher; S.S. Lolla; S. Kawasaki; R. Dekker;
    In IEEE International Ultrasonics Symposium (IUS),
    2022. DOI: 10.1109/IUS54386.2022.9957652

  10. A microwatt telemetry protocol for targeting deep implants
    S. Kawasaki; I. Subramaniam; M. Saccher; R. Dekker;
    In Proc. IEEE International Ultrasonics Symposium,
    2021. DOI: 10.1109/IUS52206.2021.9593603

  11. Schlieren Visualization of Focused Ultrasound Beam Steering for Spatially Specific Stimulation of the Vagus Nerve In Proc. 2021 10th , Online, IEEE, May 4-6 2021.
    Shinnosuke Kawasaki; Eric Dijkema; Marta Saccher; Vasiliki Giagka; Jean Schleipen; Ronald Dekker;
    In 10th International IEEE/EMBS Conference on Neural Engineering (NER),
    Online, May 4-6 2021. 2021.
    document

  12. The long-term reliability of pre-charged CMUTs for the powering of deep implanted devices
    M. Saccher; S. Kawasaki; R. Dekker;
    In Proc. IEEE International Ultrasonics Symposium,
    2021. DOI: 10.1109/IUS52206.2021.9593683

  13. Pre-charged collapse-mode capacitive micromachined ultrasonic transducer (CMUT) for broadband ultrasound power transfer
    S. Kawasaki; Y. Westhoek; I. Subramaniam; M. Saccher; R. Dekker;
    In Proc. IEEE Wireless Power Transfer Conference,
    2021. DOI: 10.1109/WPTC51349.2021.9458104

BibTeX support

Last updated: 8 Oct 2020