prof.dr. L.C.N. de Vreede

Professor, Chairman
Electronic Circuits and Architectures (ELCA), Department of Microelectronics

Expertise: RF, Microwave, Power Amplifiers, Device Characterization & modeling

Themes: XG - Next Generation Sensing and Communication

Biography

Leo C. N. de Vreede was born in Delft, the Netherlands in 1965. He received the Ph.D. degree (cum laude) from Delft University of Technology in 1996. In 1988 he joined the Laboratory of Telecommunication and Remote Sensing Technology of the Department of Electrical Engineering, Delft University of Technology. In 1996, he was appointed as assistant professor at the Delft University of Technology working on the nonlinear distortion behavior of bipolar transistors at Delft Institute of Microelectronics and Submicron Technology (DIMES). In the winter season of 98-99 he was a guest of the high speed device group at the University of San Diego, California.

In 1999 and 2015 he was appointed as an associate professor respectively full professor at the Delft University of Technology and became responsible for the Microwave Components Group and the Electronics Research Laboratory. Since that time he worked on RF solutions for improved linearity and RF performance at the device, circuit and system level. He is co-founder/advisor of Anteverta-mw a company specialized in RF device characterization, co-founder of DiTIQ, a company focusing on fully digital energy-efficient wideband transmitters. He is (co)recipient of the IEEE Microwave prize in 2008, mentor of the Else Kooi prize awarded PhD work in 2010 and mentor of the Dow Energy dissertation prize awarded PhD work in 2011. Recipient of the TUD entrepreneurial scientist award 2015. He (co)guided several students that won (best) paper awards at the: BCTM, PRORISC, GAAS, ESSDERC, IMS, RFIT and RFIC. He (co)authored more than 110 IEEE refereed conference and journal papers and holds several patents. His current interest includes RF measurement systems, technology optimization and circuit/system concepts for wireless systems.

EE4605 Integrated Circuits and Systems for Wireless Applications

Design and analysis of typical RF IC building blocks in a wireless transceiver

ET4600 Wireless Concepts and Systems

Basic concepts of RF design, such as noise, nonlinearity, Impedance Matching, Analog/Digital Modulation, Pulse-shaping, Mixer, Oscillator, Link-budget, Transmitter/Receiver Architectures

Energy Efficient Wideband Transmitter, NXP Partnership ‘Advanced 5G Solutions’

This project providing enhanced average efficiency in wideband wireless transmitters while withstanding the changing load conditions that can occur in handheld devices and MIMO/smart-antenna communication systems.

Smart Energy Efficient Digital Communication

SEEDCOM aims for fully integrated energy efficient wideband transmitters

smart Everything everywhere Access to content through Small cells Technologies

EAST is focused on the development of Small cell technologies for 5G applications up to 6 GHz

Integrated Near Field sensOrs for high Resolution MicrowavE spectRoscopy

The goal of this project is the creation of a new class of sensors, enabling fast and accurate dielectric characterization of biological samples, with high-sensitivity and high-spatial resolution.

Projects history

Merging electronics and Micro-nano PHotonics in integrated systeMs

Research program for developing an integration platform for high-frequency electronics with micro- and nano-photonics.

  1. Miniaturized Broadband Microwave Permittivity Sensing for Biomedical Applications
    G. Vlachogiannakis; Z. Hu; H. T. Shivamurthy; A. Neto; M. A. P. Pertijs; M. Spirito; L. C. N. de Vreede;
    IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology,
    Volume 3, Issue 1, pp. 48--55, March 2019. DOI: 10.1109/JERM.2018.2882564
    Abstract: ... A compact sensing pixel for the determination of the localized complex permittivity at microwave frequencies is proposed. Implemented in the 40-nm CMOS, the architecture comprises a square patch, interfaced to the material-under-test sample, that provides permittivity-dependent admittance. The patch admittance is read out by embedding the patch in a double-balanced, RF-driven Wheatstone bridge. The bridge is cascaded by a linear, low-intermediate frequency switching downconversion mixer, and is driven by a square wave that allows simultaneous characterization of multiple harmonics, thus increasing measurement speed and extending the frequency range of operation. In order to allow complex permittivity measurement, a calibration procedure has been developed for the sensor. Measurement results of liquids show good agreement with theoretical values, and the measured relative permittivity resolution is better than 0.3 over a 0.1-10-GHz range. The proposed implementation features a measurement speed of 1 ms and occupies an active area of 0.15x0.3 mm², allowing for future compact arrays of multiple sensors that facilitate 2-D dielectric imaging based on permittivity contrast.

  2. Miniaturized Broadband Microwave Permittivity Sensing for Biomedical Applications
    G. Vlachogiannakis; Z. Hu; H. T. Shivamurthy; A. Neto; M. A. P. Pertijs; L. C. N. de Vreede; M. Spirito;
    IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology,
    Volume 3, Issue 1, pp. 48-55, March 2019. DOI: 10.1109/JERM.2018.2882564
    Keywords: ... biomedical electronics;biomedical imaging;biomedical transducers;CMOS integrated circuits;microwave detectors;microwave imaging;microwave integrated circuits;microwave measurement;parameter estimation;permittivity measurement;readout electronics;biomedical applications;permittivity imaging;measurement noise reduction;bridge balancing;Debye model parameter estimation;material permittivity differences;patch sensor;programmable balanced readout bridge;fifth harmonic downconversion;fast multifrequency readout;complementary metal-oxide semiconductor technology;miniaturized broadband complex microwave permittivity sensing;CMOS technology;third harmonic downconversion;image construction;efficiency 5.3 percent;Sensors;Permittivity;Bridge circuits;Radio frequency;Permittivity measurement;Metals;Microwave circuits;Bridge circuits;biomedical sensors;complementary metal-oxide semiconductor (CMOS) sensors;complex permittivity measurement;microwave sensors.

  3. Digital Transmitters for Sub-6GHz Wireless Applications
    Leo de Vreede;
    In IEEE International Solid-State Circuits Conference (ISSCC) Forum,
    2019.

  4. A 40-nm CMOS Complex Permittivity Sensing Pixel for Material Characterization at Microwave Frequencies
    G. Vlachogiannakis; M. A. P. Pertijs; M. Spirito; L. C. N. de Vreede;
    IEEE Transactions on Microwave Theory and Techniques,
    Volume 66, Issue 3, pp. 1619-1634, March 2018. DOI: 10.1109/tmtt.2017.2753228
    Abstract: ... A compact sensing pixel for the determination of the localized complex permittivity at microwave frequencies is proposed. Implemented in the 40-nm CMOS, the architecture comprises a square patch, interfaced to the material-under-test sample, that provides permittivity-dependent admittance. The patch admittance is read out by embedding the patch in a double-balanced, RF-driven Wheatstone bridge. The bridge is cascaded by a linear, low-intermediate frequency switching downconversion mixer, and is driven by a square wave that allows simultaneous characterization of multiple harmonics, thus increasing measurement speed and extending the frequency range of operation. In order to allow complex permittivity measurement, a calibration procedure has been developed for the sensor. Measurement results of liquids show good agreement with theoretical values, and the measured relative permittivity resolution is better than 0.3 over a 0.1-10-GHz range. The proposed implementation features a measurement speed of 1 ms and occupies an active area of 0.15x0.3 mm², allowing for future compact arrays of multiple sensors that facilitate 2-D dielectric imaging based on permittivity contrast.

  5. Quasi-load insensitive class-E for Doherty and Outphasing Transmitters
    Leo de Vreede; Morteza S. Alavi;
    In IEEE MTT-S International Microwave Symposium (IMS), Workshop,
    2018.

  6. A 5x5 Microwave Permittivity Sensor Matrix in 0.14-μm CMOS
    Z. Hu; G. Vlachogiannakis; M. A. P. Pertijs; L. C. N. de Vreede; M. Spirito;
    In Proc. IEEE MTT-S International Microwave Symposium (IMS),
    6 2018. DOI: 10.1109/MWSYM.2018.8439438

  7. A Compact Energy Efficient CMOS Permittivity Sensor Based on Multi-Harmonic Downconversion and Tunable Impedance Bridge
    G. Vlachogiannakis; Z. Hu; H. T. Shivamurthy; A. Neto; M. A. P. Pertijs; L. C. N. de Vreede; M. Spirito;
    In Int. Microwave Biomedical Conference (IMBioC),
    pp. 1--3, June 2018. DOI: 10.1109/IMBIOC.2018.8428950
    Abstract: ... This paper presents a 0.15×0.3 mm2 complex permittivity sensor integrated in a 40-nm CMOS node. A single-ended patch, employed as a near-field sensing element, is integrated with a double-balanced, fully-differential tunable impedance bridge that is driven by a square RF pulse. The multi-harmonic, intermediate-frequency down-conversion architecture achieves a compact form factor and fast multi-frequency readout. Measurement results show good agreement with theoretical values and the measured relative permittivity variation remains below 0.3 over a 0.1-10 GHz range at a 1-ms measurement time. The energy efficiency resulting from the fast measurement time and the record-small active area allows integration in battery-operated wearables.

  8. Bits-In / RF-Out Transmitters for 5G mMIMO
    Leo de Vreede; Morteza S. Alavi;
    In IEEE European Microwave Week (EuMIC) Workshop,
    2018.

  9. A 40-nm CMOS Complex Permittivity Sensing Pixel for Material Characterization at Microwave Frequencies
    G. Vlachogiannakis; M. A. P. Pertijs; M. Spirito; L. C. N. de Vreede;
    IEEE Transactions on Microwave Theory and Techniques,
    Volume PP, Issue 99, pp. 1-16, 2017. DOI: 10.1109/TMTT.2017.2753228
    Keywords: ... Biomedical measurement;Microwave measurement;Microwave theory and techniques;Permittivity;Permittivity measurement;Sensor phenomena and characterization;Biomedical sensors;bridge circuits;complex permittivity measurement;integrated microwave circuits;micro-wave sensors..

  10. An intrinsically linear wideband digital polar PA featuring AM-AM and AM-PM corrections through nonlinear sizing, overdrive-voltage control, and multiphase RF clocking
    M. Hashemi; Y. Shen; M. Mehrpoo; M. Acar; R. van Leuken; M. S. Alavi; L. de Vreede;
    In 2017 IEEE International Solid-State Circuits Conference (ISSCC),
    pp. 300-301, February 2017. DOI: 10.1109/ISSCC.2017.7870380
    document

  11. A fully-integrated digital-intensive polar Doherty transmitter
    Y. Shen; M. Mehrpoo; M. Hashemi; M. Polushkin; L. Zhou; M. Acar; R. van Leuken; M. S. Alavi; L. de Vreede;
    In 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 196-199, June 2017. DOI: 10.1109/RFIC.2017.7969051
    document

  12. A wideband linear direct digital RF modulator using harmonic rejection and I/Q-interleaving RF DACs
    M. Mehrpoo; M. Hashemi; Y. Shen; R. van Leuken; M. S. Alavi; L. C. N. de Vreede;
    In 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 188-191, June 2017. DOI: 10.1109/RFIC.2017.7969049
    document

  13. An intrinsically linear wideband digital polar PA featuring AM-AM and AM-PM corrections through nonlinear sizing, overdrive-voltage control, and multiphase RF clocking
    M. Hashemi; Y. Shen; M. Mehrpoo; M. Acar; R. van Leuken; M.S. Alavi; L.C.N de Vreede;
    In ISSCC,
    pp. 300-301, Feb 2017.

  14. Enhanced Bipolar Transistor Design for the Linearization of the Base-Collector Capacitance
    Jordi vd Meulen; Leo de Vreede;
    In 2017 IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM),
    2017.

  15. Contactless Measurement of Absolute Voltage Waveforms by a Passive Electric-Field Probe
    R. Hou; M. Spirito; F. Van Rijs; L. C. N. de Vreede;
    IEEE Microwave and Wireless Components Letters,
    Volume 26, Issue 12, pp. 1008-1010, Dec 2016.

  16. Nonintrusive Near-Field Characterization of Spatially Distributed Effects in Large-Periphery High-Power GaN HEMTs
    R. Hou; M. Lorenzini; M. Spirito; T. Roedle; F. van Rijs; L. C. N. de Vreede;
    IEEE Transactions on Microwave Theory and Techniques,
    Volume 64, Issue 11, pp. 4048-4062, Nov 2016.

  17. Out-of-Band Immunity to Interference of Single-Ended Baseband Amplifiers Through IM2 Cancellation
    Emil Totev; Cong Huang; Leo C. N. de Vreede; John R. Long; Wouter A. Serdijn; Chris Verhoeven;
    IEEE Transactions on Circuits and Systems I: Regular Papers,
    Volume 63, Issue 11, pp. 1785 - 1793, November 2016. DOI: 10.1109/TCSI.2016.2593341.
    document

  18. Out-of-Band Immunity to Interference of Single-Ended Baseband Amplifiers Through IM_2 Cancellation
    E. Totev; C. Huang; L. C. N. de Vreede; J. R. Long; W. A. Serdijn; C. Verhoeven;
    IEEE Transactions on Circuits and Systems I: Regular Papers,
    Volume 63, Issue 11, pp. 1785-1793, Nov 2016.

  19. A 40-nm CMOS permittivity sensor for chemical/biological material characterization at RF/microwave frequencies
    G. Vlachogiannakis; M. Spirito; M. A. P. Pertijs; L. C. N. de Vreede;
    In 2016 IEEE MTT-S International Microwave Symposium (IMS),
    pp. 1-4, May 2016.

  20. A 112W GaN dual input Doherty-Outphasing Power Amplifier
    A. R. Qureshi; M. Acar; J. Qureshi; R. Wesson; L. C. N. de Vreede;
    In 2016 IEEE MTT-S International Microwave Symposium (IMS),
    pp. 1-4, May 2016.

  21. A 40-nm CMOS permittivity sensor for chemical/biological material characterization at RF/microwave frequencies
    G. Vlachogiannakis; M. Spirito; M. A. P. Pertijs; L. C. N. de Vreede;
    In Proc. IEEE MTT-S International Microwave Symposium (IMS),
    IEEE, pp. 1‒4, May 2016. DOI: 10.1109/mwsym.2016.7540260

  22. A 5.9 GHz RFDAC-based outphasing power amplifier in 40-nm CMOS with 49.2% efficiency and 22.2 dBm power
    Z. Hu; L. C. N. de Vreede; M. S. Alavi; D. A. Calvillo-Cortes; R. B. Staszewski; S. He;
    In 2016 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 206-209, May 2016. DOI: 10.1109/RFIC.2016.7508287
    Keywords: ... CMOS integrated circuits;differential amplifiers;digital-analogue conversion;radiofrequency power amplifiers;CMOS;RFDAC-based outphasing power amplifier;ROPA drain;complementary metal oxide semiconductor;differential quasiload-insensitive class-E branch PA;digital amplitude control word;efficiency 49.2 percent;frequency 5.9 GHz;power back-off;radiofrequency digital-to-analog converter;segmentation technique;size 40 nm;word length 3 bit;Bandwidth;CMOS integrated circuits;Dynamic range;Loading;Modulation;Power generation;Switches;CMOS power amplifier;Chireix combiner;Class-E;Outphasing power amplifier;RFDAC.

  23. Silicon-Based Technology for Integrated Waveguides and mm-Wave Systems
    V. Jovanovic; G. Gentile; R. Dekker; P. de Graaf; L. C. N. de Vreede; L. K. Nanver; M. Spirito;
    IEEE Transactions on Electron Devices,
    Volume 62, Issue 10, pp. 3153-3159, Oct 2015.

  24. Outphasing transmitters, enabling digital-like amplifier operation with high efficiency and spectral purity
    L. C. N. de Vreede; M. Acar; D. A. Calvillo-Cortes; M. P. van der Heijden; R. Wesson; M. de Langen; J. Qureshi;
    IEEE Communications Magazine,
    Volume 53, Issue 4, pp. 216-225, April 2015.

  25. Non-intrusive near-field characterization of distributed effects in large-periphery LDMOS RF power transistors
    R. Hou; M. Spirito; R. Heeres; F. van Rijs; L. C. N. de Vreede;
    In 2015 IEEE MTT-S International Microwave Symposium,
    pp. 1-3, May 2015.

  26. A Wideband 2 \times 13-bit All-Digital I/Q RF-DAC
    M. S. Alavi; R. B. Staszewski; L. C. N. de Vreede; J. R. Long;
    IEEE Transactions on Microwave Theory and Techniques,
    Volume 62, Issue 4, pp. 732-752, April 2014.

  27. Analysis of pure- and mixed-mode class-B outphasing amplifiers
    D. A. Calvillo-Cortes; L. C. N. de Vreede;
    In 2014 IEEE 5th Latin American Symposium on Circuits and Systems,
    pp. 1-4, Feb 2014.

  28. A package-integratable six-port reflectometer for power devices
    R. G. Venter; Rui Hou; K. Buisman; M. Spirito; K. Werner; L. C. N. de Vreede;
    In 2014 IEEE MTT-S International Microwave Symposium (IMS2014),
    pp. 1-4, June 2014.

  29. Silicon-Filled Rectangular Waveguides and Frequency Scanning Antennas for mm-Wave Integrated Systems
    G. Gentile; V. Jovanovic; M. J. Pelk; L. Jiang; R. Dekker; P. de Graaf; B. Rejaei; L. C. N. de Vreede; L. K. Nanver; M. Spirito;
    IEEE Transactions on Antennas and Propagation,
    Volume 61, Issue 12, pp. 5893-5901, Dec 2013.

  30. A Package-Integrated Chireix Outphasing RF Switch-Mode High-Power Amplifier
    D. A. Calvillo-Cortes; M. P. van der Heijden; M. Acar; M. de Langen; R. Wesson; F. van Rijs; L. C. N. de Vreede;
    IEEE Transactions on Microwave Theory and Techniques,
    Volume 61, Issue 10, pp. 3721-3732, Oct 2013.

  31. Ultra-wide band CPW to substrate integrated waveguide (SIW) transition based on a U-shaped slot antenna
    G. Gentile; B. Rejaei; V. Jovanovic; L. K. Nanver; L. C. N. de Vreede; M. Spirito;
    In 2013 European Microwave Integrated Circuit Conference,
    pp. 25-28, Oct 2013.

  32. Non-intrusive characterization of active device interactions in high-efficiency power amplifiers
    R. Hou; M. Spirito; J. Gajadharsing; L. C. N. de Vreede;
    In 2013 IEEE MTT-S International Microwave Symposium Digest (MTT),
    pp. 1-3, June 2013.

  33. Synthesized pulsed bias for device characterization
    A. Kumar Manjanna; K. Buisman; M. Spirito; M. Marchetti; M. Pelk; L. C. N. de Vreede;
    In 81st ARFTG Microwave Measurement Conference,
    pp. 1-4, June 2013.

  34. Device characterization for LTE applications with wideband baseband, fundamental and harmonic impedance control
    A. K. Manjanna; M. Marchetti; K. Buisman; M. Spirito; M. J. Pelk; L. C. N. de Vreede;
    In 2013 European Microwave Conference,
    pp. 255-258, Oct 2013.

  35. A 2 #x00D7;13-bit all-digital I/Q RF-DAC in 65-nm CMOS
    M. S. Alavi; G. Voicu; R. B. Staszewski; L. C. N. de Vreede; J. R. Long;
    In 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 167-170, June 2013.

  36. On the bandwidth performance of Doherty amplifiers
    L. C. N. de Vreede; R. Gajadharsing; W. C. E. Neo;
    In 2013 IEEE International Wireless Symposium (IWS),
    pp. 1-4, April 2013.

  37. A 70W package-integrated class-E Chireix outphasing RF power amplifier
    D. A. Calvillo-Cortes; M. P. van der Heijden; L. C. N. de Vreede;
    In 2013 IEEE MTT-S International Microwave Symposium Digest (MTT),
    pp. 1-3, June 2013.

  38. All-Digital RF I/Q Modulator
    M. S. Alavi; R. B. Staszewski; L. C. N. de Vreede; A. Visweswaran; J. R. Long;
    IEEE Transactions on Microwave Theory and Techniques,
    Volume 60, Issue 11, pp. 3513-3526, Nov 2012.

  39. RF Power Insensitive Varactors
    K. Buisman; C. Huang; P. J. Zampardi; L. C. N. de Vreede;
    IEEE Microwave and Wireless Components Letters,
    Volume 22, Issue 8, pp. 418-420, Aug 2012.

  40. On the Compression and Blocking Distortion of Semiconductor-Based Varactors
    C. Huang; K. Buisman; P. J. Zampardi; L. E. Larson; L. C. N. de Vreede;
    IEEE Transactions on Microwave Theory and Techniques,
    Volume 60, Issue 12, pp. 3699-3709, Dec 2012.

  41. Contactless measurement of in-circuit reflection coefficients
    Rui Hou; M. Spirito; B. J. Kooij; F. van Rijs; L. C. N. de Vreede;
    In 2012 IEEE/MTT-S International Microwave Symposium Digest,
    pp. 1-3, June 2012.

  42. Silicon integrated waveguide technology for mm-wave frequency scanning array
    G. Gentile; M. Spirito; L. C. N. de Vreede; B. Rejaei; R. Dekker; P. de Graaf;
    In 2012 7th European Microwave Integrated Circuit Conference,
    pp. 234-237, Oct 2012.

  43. On the design of package-integrated RF high-power amplifiers
    D. A. Calvillo-Cortes; K. Shi; M. de Langen; F. van Rijs; L. C. N. de Vreede;
    In 2012 IEEE/MTT-S International Microwave Symposium Digest,
    pp. 1-3, June 2012.

  44. Digital predistortion for dual-input Doherty amplifiers
    H. Cao; J. Qureshi; T. Eriksson; C. Fager; L. de Vreede;
    In 2012 IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications,
    pp. 45-48, Jan 2012.

  45. An Ultra-Low-Power BPSK Receiver and Demodulator Based on Injection-Locked Oscillators
    H. Yan; J. G. Macias-Montero; A. Akhnoukh; L. C. N. de Vreede; J. R. Long; J. N. Burghartz;
    IEEE Transactions on Microwave Theory and Techniques,
    Volume 59, Issue 5, pp. 1339-1349, May 2011.

  46. Millimeter-wave integrated waveguides on silicon
    G. Gentile; R. Dekker; P. de Graaf; M. Spirito; L.C.N. de Vreede; B. Rejaei;
    In Proc. 2011 IEEE Topical Meeting on Silicon Monolithic Integrated Circuits RF Systems (SiRF 2011),
    Phoenix, AZ, pp. 37-40, Jan. 2011. ISBN 978-1-4244-8060-9; DOI 10.1109/SIRF.2011.5719314.

  47. Millimeter-wave integrated waveguides on silicon
    G. Gentile; R. Dekker; P. de Graaf; M. Spirito; L. C. N. de Vreede; B. Rejaei;
    In 2011 IEEE 11th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems,
    pp. 37-40, Jan 2011.

  48. Orthogonal summing and power combining network in a 65-nm all-digital RF I/Q modulator
    M. S. Alavi; R. B. Staszewski; L. C. N. de Vreede; J. R. Long;
    In 2011 IEEE International Symposium on Radio-Frequency Integration Technology,
    pp. 21-24, Nov 2011.

  49. A 2-GHz digital I/Q modulator in 65-nm CMOS
    M. S. Alavi; A. Visweswaran; R. B. Staszewski; L. C. N. de Vreede; J. R. Long; A. Akhnoukh;
    In IEEE Asian Solid-State Circuits Conference 2011,
    pp. 277-280, Nov 2011.

  50. Efficient LDMOS device operation for envelope tracking amplifiers through second harmonic manipulation
    M. S. Alavi; F. van Rijs; M. Marchetti; M. Squillante; T. Zhang; S. J. Theeuwen; Y. Volokhine; R. H. Jos; M. P. van der Heijden; M. Acar; L. C. de Vreede;
    In 2011 IEEE MTT-S International Microwave Symposium,
    pp. 1-1, June 2011.

  51. A 65nm CMOS pulse-width-controlled driver with 8Vpp output voltage for switch-mode RF PAs up to 3.6GHz
    D. A. Calvillo-Cortes; M. Acar; M. P. van der Heijden; M. Apostolidou; L. C. N. de Vreede; D. Leenaerts; J. Sonsky;
    In 2011 IEEE International Solid-State Circuits Conference,
    pp. 58-60, Feb 2011.

  52. Efficient LDMOS device operation for envelope tracking amplifiers through second harmonic manipulation
    M. S. Alavi; F. van Rijs; M. Marchetti; M. Squillante; T. Zhang; S. J. C. H. Theeuwen; Y. Volokhine; H. F. F. Jos; M. P. v. d. Heijden; M. Acar; L. C. N. de Vreede;
    In 2011 IEEE MTT-S International Microwave Symposium,
    pp. 1-4, June 2011.

  53. A compact 65W 1.7 #x2013;2.3GHz class-E GaN power amplifier for base stations
    K. Shi; D. A. Calvillo-Cortes; L. C. N. de Vreede; F. van Rijs;
    In 2011 41st European Microwave Conference,
    pp. 1103-1106, Oct 2011.

  54. A compact and power-scalable 70W GaN class-E power amplifier operating from 1.7 to 2.6 GHz
    D. A. Calvillo-Cortes; L. C. N. de Vreede; M. de Langen;
    In Asia-Pacific Microwave Conference 2011,
    pp. 1546-1549, Dec 2011.

  55. A 550 #x2013;1050MHz +30dBm class-E power amplifier in 65nm CMOS
    R. Zhang; M. Acar; M. P. van der Heijden; M. Apostolidou; L. C. N. de Vreede; D. M. W. Leenaerts;
    In 2011 IEEE Radio Frequency Integrated Circuits Symposium,
    pp. 1-4, June 2011.

  56. A compact 65W 1.7 #x2013;2.3GHz class-E GaN power amplifier for base stations
    K. Shi; D. A. Calvillo-Cortes; L. C. N. de Vreede; F. van Rijs;
    In 2011 6th European Microwave Integrated Circuit Conference,
    pp. 542-545, Oct 2011.

  57. A transformer for high-power RF applications using bondwires in parallel
    D. A. Calvillo-Cortes; L. C. N. de Vreede; M. P. van der Heijden;
    In 2011 41st European Microwave Conference,
    pp. 103-106, Oct 2011.

  58. Silicon Filled Integrated Waveguides
    G. Gentile; R. Dekker; P. de Graaf; M. Spirito; M. J. Pelk; L. C. N. de Vreede; B. Rejaei Salmassi;
    IEEE Microwave and Wireless Components Letters,
    Volume 20, Issue 10, pp. 536-538, Oct 2010.

  59. Design concepts for semiconductor based ultra linear varactor circuits.
    C. Huang; K. Buisman; L.K. Nanver; P.J. Zampardi; L.E. Larson; L.C.N. de Vreede;
    In Proceedings of Bipolar/BiCMOS Circuits and Technology Meeting (BCTM),
    Austin, Texas, USA, IEEE, pp. 204-211, 2010.

  60. The state-of-the-art of RF capacitive tunable components
    C. Huang; K. Buisman; L.K. Nanver; L.C.N. de Vreede;
    In 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT 2010),
    Shanghai, China, pp. 619-622, 2010.
    document

  61. Enhanced RF power amplifiers and device characterization setups using coherent mixed-signal techniques
    L. C. N. de Vreede; M. Pelk; E. Neo; J. Qureshi; M. Spirito; M. Squillante; M. Marchetti;
    In 2010 IEEE 11th Annual Wireless and Microwave Technology Conference (WAMICON),
    pp. 1-5, April 2010.

  62. A mixed-signal load-pull system for base-station applications
    M. Marchetti; R. Heeres; M. Squillante; M. Pelk; M. Spirito; L. C. N. de Vreede;
    In 2010 IEEE Radio Frequency Integrated Circuits Symposium,
    pp. 491-494, May 2010.

  63. A multi-step phase calibration procedure for closely spaced multi-tone signals
    M. Mirra; M. Marchetti; F. Tessitore; M. Spirito; L. C. N. de Vreede; L. Betts;
    In 75th ARFTG Microwave Measurement Conference,
    pp. 1-5, May 2010.

  64. Ultra Linear Low-Loss Varactor Diode Configurations for Adaptive RF Systems
    C. Huang; K. Buisman; M. Maretti; L. K. Nanver; F. Sarubbi; M. Popadic; T. Scholtes; H. Schellevis; L. E. Larson; L. de Vreede;
    IEEE Transactions on Microwave Theory and Techniques,
    Volume 57, Issue 1, pp. 205-215, 2009.

  65. Improved RF Devices for Future Adaptive Wireless Systems Using Two-Sided Contacting and AlN Cooling
    L.K. Nanver; H. Schellevis; T.L.M. Scholtes; L. La Spina; G. Lorito; F. Sarubbi; V. Gonda; M. Popadic; K. Buisman; L.C.N. de Vreede; C. Huang; S. Milosavljevic; E.J.G. Goudena;
    IEEE Journal of Solid-State Circuits,
    Volume 44, Issue 9, pp. 2322-2338, 2009.

  66. A mixed-signal approach for high-speed fully controlled multidimensional load-pull parameters sweep
    M. Squillante; M. Marchetti; M. Spirito; L. C. N. de Vreede;
    In 2009 73rd ARFTG Microwave Measurement Conference,
    pp. 1-5, June 2009.

  67. Active Harmonic Load #x2013;Pull With Realistic Wideband Communications Signals
    M. Marchetti; M. J. Pelk; K. Buisman; W. C. E. Neo; M. Spirito; L. C. N. de Vreede;
    IEEE Transactions on Microwave Theory and Techniques,
    Volume 56, Issue 12, pp. 2979-2988, Dec 2008.

  68. Enabling low-distortion varactors for adaptive transmitters
    C. Huang; L. C. N. de Vreede; F. Sarubbi; M. Popadic; K. Buisman; J. Qureshi; M. Mar.etti; A. Akhnoukh; T. L. M. Scholtes; L. E. Larson; L. K. Nanver;
    IEEE Trans. Microwave Theory and Techniques,
    Volume 56, Issue 5, pp. 1149-1163, May 2008.

  69. A 67 dBm OIP3 Multistacked Junction Varactor
    C. Huang; K. Buisman; L. K. Nanver; F. Sarubbi; M. Popadic; T. L. M. Scholtes; H. Schellevis; L. E. Larson; L. C. N. de Vreede;
    IEEE Microwave and Wireless Components Letters,
    Volume 18, Issue 11, pp. 749-751, 2008.

  70. 50 GHz Integrated Distributed Phase Shifter based on novel Silicon-on-Glass Varactor Diodes
    G. Gentile; K. Buisman; A. Akhoukh; L.C.N. de Vreede; B. Rejaei; L. K. Nanver;
    In Proceedings of SiRF 2008,
    Orlando, Florida, 2008.
    document

  71. RF/Microwave Device Fabrication in Silicon-on-Glass Technology
    L..K. Nanver; H. Schellevis; T.L.M. Scholtes; L. La Spina; G. Lorito; F. Sarubbi; V. Gonda; M. Popadic; K. Buisman; L.C.N. de Vreede; C. Huang; S. Milosavljevic; E.J.G. Goudena;
    In Proceedings of 26th International Conference on Microelectronics (MIEL 2008),
    Niza, Serbia, pp. 273-280, May 2008.

  72. Special RF/Microwave Devices in Silicon-on-Glass Technology
    L.K. Nanver; H. Schellevis; T.L.M. Scholtes; L. La Spina; G. Lorito; F. Sarubbi; V. Gonda; M. Popadic; K. Buisman; L.C.N. de Vreede; C. Huang; S. Milosavljevic; E.J.G. Goudena;
    In Proceedings of IEEE Bipolar/BiCMOS Circuit and Technology Meeting (BCTM 2008),
    Monterey, CA, USA, pp. 33-40, Oct. 2008.

  73. A Monolithic Low-Distortion Low-Loss Silicon-on-Glass Varactor-Tuned Filter With Optimized Biasing
    K. Buisman; L. C. N. de Vreede; L. E. Larson; M. Spirito; A. Akhnoukh; Y. Lin; X. Liu; L. K. Nanver;
    IEEE Microwave and Wireless Components Letters,
    Volume 17, Issue 1, pp. 58-60, Jan. 2007.

  74. Varactor Topologies for RF Adaptivity with Improved Power Handling and Linearity
    K. Buisman; C. Huang; A. Akhnoukh; M. Mar.etti; L. C. N. de Vreede; L. E. Larson; L. K. Nanver;
    In Proc. Microwave Symposium, IEEE/MTT-S International,
    Honolulu, Hawaii, USA, pp. 319-322, Jun. 2007.

  75. A Low-Loss Compact Linear Varactor Based Phase-Shifter
    J. H. Qureshi; S. Kim; K. Buisman; C. Huang; M. J. Pelk; A. Akhnoukh; L. E. Larson; L. K. Nanver; L. C. N. de Vreede;
    In Proc. IEEE RFIC (Radio Frequency Integrated Circuits) Symposium,
    Honolulu, Hawaii,USA, pp. 453-456, Jun. 2007.

  76. Varactor element and low distortion varactor circuit arrangement
    De Vreede, L.C.N.;
    Patent, WO 2007061308, 05 2007.
    document

  77. Adaptive Multi-Band Multi-mode power amplifier using integrated varactor-based tunable matching networks
    W. C. E. Neo; Y. Lin; X.-D. Liu; L. C. N. de Vreede; L. E. Larson; M. Spirito; M. J. Pelk; K. Buisman; A. Akhoukh; A. De Graauw; L. K. Nanver;
    IEEE Journal of Solid-State Circuits,
    Volume 41, Issue 9, pp. 2166-2176, Sept. 2006. ISSN 0018-9200.

  78. Silicon-on-glass technology for RF and microwave device fabrication
    Lis K. Nanver; H. Schellevis; T.L.M. Scholtes; L. La Spina; G. Lorito; F. Sarubbi; V. Gonda; M. Popadic; K. Buisman; L.C.N. de Vreede; H. Cong; S. Milosavljevic; E.J.G. Goudena;
    In 8th International Conference on Solid-State and Integrated Circuit Technology Proceedings ICSICT-2006,
    Shanghai, China, pp. 162-165, 2006. ISBN 1-4244-0160-7.
    document

  79. Surface-passivated high-resistivity silicon as a true microwave substrate
    M. Spirito; F. de Paola; L. K. Nanver; E. Valletta; B. Rong; B. Rejaei; L. C. N. de Vreede; J. N. Burghartz;
    IEEE Transactions on Microwave Theory and Techniques,
    Volume 53, Issue 7, pp. 2340-2347, Jul. 2005.

  80. High-Performance Varactor Diodes Integrated in a Silicon-on-Glass Technology
    K. Buisman; L. K. Nanver; T. L. M. Scholtes; H. Schellevis; L. C. N. de Vreede;
    In Proc. of the 35th European Solid-State Device Research Conference (ESSDERC),
    Grenoble, France, pp. 117-120, Sep. 2005.
    document

  81. Low-distortion, low-loss varactor-based adaptive matching networks, implemented in a silicon-on-glass technology
    K. Buisman; L.C.N de Vreede; L.E. Larson; M. Spirito; A. Akhnoukh; Y. Lin; X. Liu; L.K. Nanver;
    In Proc. IEEE Radio Frequency Integrated Circuits Symposium,
    pp. 389-392, 2005.
    document

  82. Distortion-free varactor diode topologies for RF adaptivity
    K. Buisman; L.C.N de Vreede; L.E. Larson; M. Spirito; A. Akhnoukh; T.L.M. Scholtes; L.K. Nanver;
    In Proc. IEEE MTT-S International Microwave Symposium,
    pp. 157-160, 2005.
    document

  83. Improved hybrid SiGe HBT class-AB power amplifier efficiency using varactor-based tunable matching networks
    W. C. E Neo; X. Liu; Y. Lin; L. C. N. de Vreede; M. Spirito; A. Akhnoukh; L. K. Nanver; L. E. Larson; A. de Graauw;
    In Proc. IEEE Bipolar/BiCMOS Circuits and Technology Meeting BCTM,
    pp. 108-111, 2005.

  84. The Electro-Thermal Smoothie Database Model for LDMOS Devices
    V. Cuoco; W.C.E. Neo; M. Spirito; O.Yanson; N. Nenadovic; L.C.N. de Vreede; H.F.F. Jos; J.N. Burghartz;
    In Proc. ESSDERC,
    Leuven, Belgium, pp. 457-460, Sep. 2004. ISBN 0-7803-8479-2.

  85. A New Extraction Technique for the Series Resistances of Semiconductor Devices Based on the Intrinsic Properties of Bias-Dependent Y-Parameters
    V. Cuoco; W.C.E. Neo; L.C.N de Vreede; H.C de Graaff; L.K. Nanver; H.C. Wu; H.F.F Jos; J.N. Burghartz;
    In Proc. Bipolar/BiCMOS Circuits and Technology Meeting 2004 (BCTM 2004),
    Montreal, Canada, pp. 148-151, Sep. 2004.

  86. Design and Characterization of a High-Resistivity Silicon Traveling Wave Amplifier for 10 Gb/s Optical Communucation Systems
    F.M. De Paola; L.C.N. de Vreede; L.K. Nanver; N. Rinaldi; J.N. Burghartz;
    In J.D. Cressler; J. Papapolymerou (Ed.), 2004 Topical Meeting on Silicon Monolithic Integrated Circuits RF Systems,
    Atlanta, USA, pp. 69-7, Sep. 2004. ISBN 0-7803-8703-1.

  87. Power amplifier PAE and ruggedness optimization by second-harmonic control
    M. Spirito; L.C.N. de Vreede; L.K. Nanver; S. Weber; J.N. Burghartz;
    IEEE Journal of Solid-State Circuits,
    Volume 38, Issue 9, pp. 1575-1583, 2003.

  88. Power amplifier PAE and ruggedness optimization by second-harmonic control
    M. Spirito; L. C. N. de Vreede; L. K. Nanver; S. Weber; J. N. Burghartz;
    IEEE Journal of Solid-State Circuits,
    Volume 38, Issue 9, pp. 1575-1583, Sept 2003.

  89. A Wideband Distributed Silicon Driver for 10 Gb/s External Modulators
    F.M. De Paola; L.C.N. de Vreede; N. Rinaldi; J.N. Burghartz;
    In Proc. ProRISC 2003,
    Veldhoven, The Netherlands, pp. 186-189, Nov. 2003. ISBN 90-73461-39-1.
    document

  90. Low-loss passives for 2nd-harmonic termination control in power amplifiers for mobile applications
    M. Spirito; L.C.N. de Vreede; L.K. Nanver; J. Mueller; J.N. Burghartz;
    In 4th Topical Meeting on Silicon Monolithic Integrated Circuits RF Systems,
    Garmisch, Southern Germany, pp. 49-52, Apr. 2003.

  91. A 2 GHz high-gain differential InGaP HBT driver amplifier matched for high IP3
    M.P. van der Heijden; M. Spirito; L.C.N. de Vreede; F. van Straten; J.N. Burghartz;
    In 2003 IEEE MTT-S International Microwave Symposium,
    Philadelphia, PA, USA, pp. 235 -238, Jun. 2003.

  92. Design and characterization of integrated passive elements on high ohmic silicon
    E. Valletta; J. van Beek; A. Den Dekker; N. Pulsford; H.F.F. Jos; L.C.N. de Vreede; L.K. Nanver; J.N. Burghartz;
    In 2003 IEEE MTT-S International Microwave Symposium,
    Philadelphia, PA, USA, pp. 1235 -1238, Jun. 2003.

  93. A Calibration Procedure for On-Wafer Differential Load-Pull Measurements
    M. Spirito; M.P. van der Heijden; M. de Kok; L.C.N. de Vreede;
    In 61st ARFTG,
    Philadelphia, Pennsylvania, USA, Jun. 2003.

  94. A High Performance Unilateral 900 MHz LNA with Simultaneous Noise, Impedance, and IP3 Match
    M.P. van der Heijden; L.C.N. de Vreede; F. van Straten; J.N. Burghartz;
    In 2003 BCTM,
    Toulouse, France, Sep. 2003.

  95. Low-loss passives for 2nd-harmonic termination control in power amplifiers for mobile applications
    M. Spirito; L. C. N. de Vreede; L. K. Nanver; J. E. Mueller; J. N. Burghartz;
    In 2003 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, 2003. Digest of Papers.,
    pp. 49-52, April 2003.

  96. A calibration procedure for on-wafer differential load-pull measurements
    M. Spirito; M. P. van der Heijden; M. de Kok; L. C. N. de Vreede;
    In 61st ARFTG Conference Digest, Spring 2003.,
    pp. 1-4, June 2003.

  97. A 2 GHz high-gain differential InGaP HBT driver amplifier matched for high IP3
    M. P. van der Heijden; M. Spirito; L. C. N. de Vreede; F. van Straten; J. N. Burghartz;
    In IEEE MTT-S International Microwave Symposium Digest, 2003,
    pp. 235-238 vol.1, June 2003.

  98. Theory and design of an ultra-linear square-law approximated LDMOS power amplifier in class-AB operation
    M.P van der Heijden; H.C. de Graaff; L.C.N. de Vreede; J.R. Gajadharsing; J.N. Burghartz;
    IEEE Trans. Microwave Theory and Techniques,
    Volume 50, Issue 9, pp. 2176-2184, Sep. 2002.

  99. A novel frequency-independent third-order intermodulation distortion cancellation technique for BJT amplifiers
    M.P. van der Heijden; H.C. de Graaff; L.C.N. de Vreede;
    IEEE Journal of Solid-State Circuits,
    Volume 37, Issue 9, pp. 1176-1183, Sep. 2002. ISSN 0018-9200.

  100. A 1.8 GHz Integrated LNA using a Novel RF Si Technology
    F.M. De Paola; L.C.N. de Vreede; L. Nanver; B. Rejaei; N. Rinaldi; J.N. Burghartz;
    In Proc. SAFE 2002,
    Veldhoven, The Netherlands, STW, pp. 30-34, Nov. 2002. ISBN 90-73461-33-2.

  101. Verification of the IMD Behavior of the Smoothie Database Model for FET Devices
    V. Cuoco; M.P. van der Heijden; M. Pelk; L.C.N. de Vreede;
    In Proc. SAFE 2002,
    Veldhoven, The Netherlands, STW, pp. 14-21, Nov. 2002. ISBN 90-73461-33-2.

  102. Power Amplifier Optimization for Mobile Application by Second Harmonic Control
    M. Spirito; L.N.C. de Vreede; L.K. Nanver; S. Weber; J.N. Burghartz;
    In Proc. ProRISC 2002,
    Veldhoven, The Netherlands, pp. 471-475, Nov. 2002.

  103. Design of Planar Mar.and Balun for MMIC Applications
    E. Valletta; L.C.N. de Vreede; J.N. Burghartz;
    In Proc. SAFE 2002,
    Veldhoven, The Netherlands, STW, Nov. 2002. ISBN 90-73461-33-2.

  104. The Effect on Non-Saturated Electron Drift Velocity on Bipolar Device Linearity
    L.C.N. de Vreede; H.C. de Graaff; B. Rejeai;
    In Proc. 2002 IEEE BCTM,
    Monterey, CA, USA, pp. 88-91, Sep. 2002. ISBN 0-7803-7562-9.

  105. Power Amplifier PAE and Ruggedness Optimization by Second Harmonic Control
    M. Spirito; L.C.N. de Vreede; L.K. Nanver; S. Weber; J.N. Burghartz;
    In Proc. 2002 IEEE BCTM,
    Monterey, CA, USA, pp. 173-176, Sept. 2002. ISBN 0-7803-7562-9.

  106. Implementation of an isothermal non-linear device characterization system using the ICCAP program
    V. Cuoco; M. Pelk; M.P. van d. Heijden; M. de Kok; L.N.C. de Vreede;
    In European IC-CAP Workhop,
    Berlin, Germany, Mar. 2002.

  107. Experimental Verification of the Smoothie Database Model for Third and Fifth Order Intermodulation Distortion
    V. Cuoco; M.P. van d. Heijden; M. Pelk; L.C.N. de Vreede;
    In ESSDERC 2002,
    Firenze, Italy, University of Bologna, pp. 635-638, Sep. 2002. ISBN 88-900847-8-2.

  108. The smoothie data base model for the correct modeling of non-linear distortion in FET devices
    V. Cuoco; M.P. van d. Heijden; L.C.N. de Vreede;
    In 2002 IEEE MTT-S International Microwave Symposium,
    Seattle, USA, pp. 2149-2152, Jun. 2002. ISBN 0-7803-7239-5.

  109. Power amplifier PAE and ruggedness optimization by second harmonic control
    M. Spirito; L. C. N. de Vreede; L. K. Nanver; S. Weber; J. N. Burghartz;
    In Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting,
    pp. 173-176, 2002.

  110. Introduction to the 2000 bipolar/BiCMOS circuits and technology meeting
    L.C.N. de Vreede;
    IEEE J. Solid-State Circuits,
    Volume 36, Issue 9, pp. 1371-1372, Sept. 2001.

  111. Reduction of UHF power transistor distortion with a nonuniform collector doping profile
    W.D. van Noort; H.F.F. Jos; L.C.N. de Vreede; L.K. Nanver; J.W. Slotboom;
    IEEE Journal of Solid-State Circuits,
    Volume 36, Issue 9, pp. 1399-1406, Sept. 2001.

  112. Linearity optimization of a distributed base station amplifier using an automated high-speed measurement protocol
    M.P. van der Heijden; J.R. Gajadharsing; B. Rejaei; L.C.N. de Vreede;
    In B. Sigmon (Ed.), 2001 IEEE MTT-S International Microwave Symposium,
    Phoenix, AZ, USA, pp. 1679-1682, May 2001. ISBN: 0-7803-6538-0.
    document

  113. Power Amplifier PAE and Ruggedness Optimization by Second Harmonic Control
    M. Spirito; L.N.C. de Vreede; L.K. Nanver; S. Weber; J.N. Burghartz;
    In ProRISC 2001,
    Veldhoven, The Netherlands, pp. 623-629, Nov. 2001.
    document

  114. A Single Chip 1.8 GHz LNA and Power Amplifier with Improved Isolation Using Micromachining
    F.M. De Paola; L.C.N de Vreede; L.K. Nanver; B. Rajaei; N.P. Pham; N. Rinaldi; J.N. Burghartz;
    In SAFE 2001,
    Veldhoven, The Netherlands, pp. 35-41, Nov. 2001.

  115. Isothermal Non-Linear Device Characterization
    V. Cuoco; M. de Kok; M.P. van d. Heijden; L.C.N. de Vreede;
    In ProRISC 2001,
    Veldhoven, The Netherlands, pp. 338-341, Nov. 2001.
    document

  116. A novel frequency independent third-order intermodulation distortion cancellation technique for BJT amplifiers
    M.P. van der Heijden; H.C. de Graaff.; L.C.N. de Vreede;
    In Proceedings of the 2001 Bipolar/BiCMOS Circuits and Technology Meeting,
    Minneapolis, MN, USA, pp. 163-166, Sept. 2001. ISBN 0-7803-7019-8.
    document

  117. Isothermal Large Signal Device Characterization
    V. Cuoco; M. de Kok; M.P. van d. Heijden; L.C.N. de Vreede;
    In ARFTG Conference,
    San Diego, Nov. 2001.

  118. Direct Mextram Parameter Computation Based on Transistor Layout and Doping Profile
    D. di Crescenzo; N. Rinaldi; H.C. de Graaff; L.C.N. de Vreede;
    In SAFE 2000,
    pp. 37-42, 2000.

  119. Reduction of distorsion with a non-uniform BJT collector doping profile
    W.D. van Noort; L.C.N. de Vreede; H.F.F. Jos; L.K. Nanver; J.W. Slotboom;
    In Proceedings SAFE 2000,
    Veldhoven, pp. 113-118, 2000.

  120. A High Speed Measurement Protocol for Optimizing Amplifier Linearity
    M. van der Heijden; L.C.N. de Vreede;
    In PRORISC 2000,
    pp. 307-310, 2000.

  121. Reduction of UHF power distortion with a non-uniform collector doping profile
    W.D. van Noort; H.F.F. Jos; L.C.N. de Vreede; L.K. Nanver; J.W. Slotboom;
    In Proceedings of the 2000 BCTM,
    Minneapolis, Minnesota, Sept 24-26, 2000, pp. 126-129, 2000. ISBN 0-7803-6384-1/-X/-8.

  122. A Mixed Level Simulator for the Large Signal Optimization of LDMOS Devices
    V. Cuoco; M.P. van der Heijden; S. Mijalkovic; N. Rinaldi; H.C. de Graaff; L.C.N. de Vreede;
    In Proc. 3rd Workshop on Semiconductor Advances for Future Electronics,
    Veldhoven, pp. 42-47, 2000.

  123. Modelling and Characterization of HF Large-signal Device Operation
    L.C.N. de Vreede;
    In Europractice workshop High Speed Devices and Circuits for Analog Applications Beyond 3 GHz,
    Germany, Feb. 2000.

  124. Bipolar transistor epilayer design using the MAIDS mixed-level simulator
    L.C.N. de Vreede; H.C. de Graaff; Willemen; J.A.; W. van Noort; Jos; R.; Larson; L.E.; J.W. Slotboom; J.L. Tauritz;
    IEEE J. Solid-State Circuits,
    Volume 34, Issue 9, pp. 1331-1338, Sept. 1999.

  125. The impact of silicon MMICs on system designs
    L.E. Larson; L.C.N. de Vreede;
    In 29th European Microwave Conference 1999,
    Munich, pp. 166-169, Oct. 1999.

  126. Extension of the collector charge description for compact bipolar epilayer models
    L.C.N. de Vreede; H.C. de Graaff; J.L. Tauritz; Baets; R.G.F;
    IEEE Tr. Electron Devices,
    Volume 45, Issue 1, pp. 277-285, Jan. 1998.

  127. Impact of CDMA Specifications on Circuit Design
    R. Mahmoudi; H.C. de Graaff; L.C.N. de Vreede; J.L. Tauritz;
    In Workshop on Low Cost Si-based Technology for Wireless Applications IEEE RFIC Symposium,
    Baltimore, Jun. 1998.

  128. 1.8 GHz Active Microwave Filter realized in SiGe for Mobile Communications
    M.J.M. Martinez; L.C.N. de Vreede; J.L. Tauritz;
    In Proceedings of XIII Conference on Design of Circuits and Integrated Systems (DCIS'98),
    Madrid, Nov. 1998.

  129. Optimisation of the base-collector doping profile for high-frequency distortion
    W. van Noort; L.C.N. de Vreede; L.K. Nanver; H.C. de Graaff; J.W. Slotboom;
    In Proc. 28th ESSDERC,
    France, pp. 496-499, Sep. 1998.

  130. Active Microwave Filters realized in SiGe Technology
    M.J.M. Martinez; L.C.N. de Vreede; J.L. Tauritz;
    In MTT-S European Wireless 98,
    Amsterdam, pp. 110-115, Oct. 1998.

  131. Performance of MEXTRAM and its Comparison with VBIC 95
    H.C. de Graaff; W.J. Kloosterman; L.C.N. de Vreede;
    In Hewlett-Packard SCCT Modelling Seminar,
    Tokyo, May 1998.

  132. Optimum dimensions of the epilayer for third-order intermodulation distortion
    L.C.N. de Vreede; W. van Noort; H.F.F. Jos; H.C. de Graaff; J.W. Slotboom; J.L. Tauritz;
    In Proc. Bipolar/BiCMOS Circuits and Technology Meeting,
    pp. 168-171, Sept. 1998.

  133. MAIDS: A microwave active integral device simulator
    L. de Vreede; W. van Noort; H.C. de Graaff; J.L. Tauritz; J. Slotboom;
    In Proceedings of the 27th ESSDERC,
    Stuttgart, Germany, pp. 108-111, Sept. 1997.

  134. Advanced modeling of distortion effects in bipolar transistors using the Mextram model
    L.C.N. de Vreede; H.C. de Graaff; Mouthaan; K.; de Kok; M.; J.L. Tauritz; Baets; R.G.F;
    J. Solid-State Circuits,
    Volume 31, Issue 1, pp. 114-121, Jan. 1996.

  135. Plasma_enhanced chemical vapor deposition of thick silicon nitride films with low stress on InP
    L. Shi; C. A. M. Steenbergen; A. H. de Vreede; M. K. Smit; T. L. M. Scholtes; F. H. Groen; J. W. Pedersen;
    J. Vac. Sci. Technol. A,
    Volume 14, pp. 471, 1996.

  136. System performance of a 4-channel PHASAR WDM receiver operating at 1.2 Gbit/s
    C.A.M. Steenbergen; M.O. van Deventer; L.C.N. de Vreede; C. van Dam; M.K. Smit; B.H. Verbeek;
    In Proc. OFC 1996,
    San Jose, CA, USA, pp. 310-311, Feb. 1996.

  137. HF Silicon ICs for Wide-band Communication Systems
    L.C.N. de Vreede;
    PhD thesis, Delft University of Technology, Jun 1996.
    document

  138. Extension of the collector charge description for compact bipolar epilayer models
    L.C.N. de Vreede; H.C. de Graaff; J.L. Tauritz; R.G.F. Baets;
    In Proc. ESSDERC 1995,
    The Hague, The Netherlands, pp. 229-232, Sep. 1995.

  139. CAD-tool for integrated optics
    X.J.M. Leijtens; L.H. Spiekman; C. van Dam; L.C.N. de Vreede; M.K. Smit; J.L. Tauritz;
    In Proc. ECIO 1995,
    Delft, The Netherlands, pp. 463-466, Apr. 1995.

  140. 4-channel wavelength flattened demultiplexer integrated with photodetectors
    C. A. M. Steenbergen; C van Dam; T. L. M. Scholtes; A. H. de Vreede; L. Shi; J.J.G.M van der Tol; P. Demeester; M.K. Smit;
    In Proc. 7th Eur. Conf. on Int. Opt. (ECIO �95),
    1995.

  141. Integrated 1 GHz 4-channel InP phasar based WDM-receiver with Si bipolar frontend array
    C.A.M. Steenbergen; L.C.N. de Vreede; C. van Dam; T.L.M. Scholtes; M.K. Smit; J.L. Tauritz; J.W. Pedersen; I. Moerman; B.H. Verbeek; R.G.F. Baets;
    In Proc. ECOC 1995,
    Brussels, Belgium, pp. 211-214, Sept. 1995.

  142. A figure of merit for the high-frequency noise behavior of bipolar transistors
    L.C.N. de Vreede; H.C. de Graaff; G.A.M. Hurkx; J.L. Tauritz; R.G.F. Baets;
    IEEE Journal of Solid State Circuits,
    Volume 29, Issue 10, pp. 1220-1226, Oct. 1994.

  143. A high gain silicon AGC amplifier with a 3 dB bandwidth of 4 GHz
    L.C.N. de Vreede; A.C. Dambrine; J.L. Tauritz; R.G.F. Baets;
    IEEE Transactions on Microwave Theory and Techniques,
    Volume 42, Issue 4, pp. 546-552, Apr. 1994.

  144. Advanced modelling of distortion effects in bipolar transistors using the Mextram model
    L.C.N. de Vreede; H.C. de Graaff; K. Mouthaan; M. de Kok; J.L. Tauritz; R.G.F. Baets;
    In Proc. IEEE Bipolar/BiCMOS Circuits and Technology Meeting (BCTM 1994),
    Minneapolis, MN, USA, pp. 48-51, Oct. 1994.

  145. A figure of merit for the high-frequency noise behaviour of bipolar transistors
    H.C. de Graaff; L.C.N. de Vreede; G.A.M. Hurkx; J.L. Tauritz; R.G.F. Baets;
    In Proc. 1993 IEEE BCTM,
    Minneapolis, USA, pp. 118-121, Oct. 1993.

BibTeX support

Last updated: 11 Aug 2017