MSc A. Natali

PhD student
Circuits and Systems (CAS), Department of Microelectronics

Expertise: Graph-based Signal Processing, Learning over Graphs, (Network) Data Science


Alberto Natali obtained his MSc degree in 2019 from the University of Perugia, Italy. On the same year, he joined TU Delft as Ph.D. candidate in the Circuit and Systems group under the supervision of Prof. Geert Leus. His research interests include signal processing and machine learning over graphs, algebra and optimization.

EE4530 Applied convex optimization

Applied convex optimization: role of convexity in optimization, convex sets and functions, Canonical convex problems (SDP, LP, QP), second-order methods, first-order methods for large-scale problems.

  1. Learning Time-Varying Graphs From Online Data
    Natali, A.; Isufi, E.; Coutino, M.; Leus, G.;
    IEEE Open Journal of Signal Processing,
    Volume 3, pp. 212--228, 2022. DOI: 10.1109/OJSP.2022.3178901

  2. Online Graph Learning From Time-Varying Structural Equation Models
    Natali, A.; Isufi, E.; Coutino, M.; Leus, G.;
    In Proc. of Asilomar Conference on Signals, Systems, and Computers (Asilomar),
    Monterey, California, USA, pp. 1579--1585, October 2021. DOI: 10.1109/IEEECONF53345.2021.9723163

  3. Online Time-Varying Topology Identification Via Prediction-Correction Algorithms
    Natali, A.; Coutino, M.; Isufi, E.; Leus, G.;
    In Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
    Rio de Janeiro, Brazil, pp. 5400--5404, July 2021. DOI: 10.1109/ICASSP39728.2021.9415053

  4. Forecasting multi-dimensional processes over graphs
    Alberto Natali; Elvin Isufi; Geert Leus;
    In Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP),
    Barcelona (Spain), May 2020. DOI: 10.1109/ICASSP40776.2020.9053522

  5. Topology-Aware Joint Graph Filter and Edge Weight Identification for Network Processes
    Alberto Natali; Mario Coutino; Geert Leus;
    In 2020 IEEE 30th International Workshop on Machine Learning for Signal Processing (MLSP),
    Espoo (Finland), September 2020. DOI: 10.1109/MLSP49062.2020.9231913

  6. Microfabrication of large-area circular high-stress silicon nitride membranes for optomechanical applications
    E. Serra; M. Bawaj; A. Borrielli; G. Di Giuseppe; S. Forte; N. Kralj; N. Malossi; L. Marconi; F. Marin; F. Marino; B. Morana; R. Natali; G. Pandraud; A. Pontin; G. A. Prodi; M. Rossi; P. M. Sarro; D. Vita;
    AIP Advances,
    Volume 6, pp. 065004, 2016.

BibTeX support

Last updated: 20 Oct 2022