dr. M.J. Lee

Postdoc
Circuits and Systems (CAS), Department of Microelectronics

Expertise: SPAD image sensors, bio imaging

Biography

Myung-Jae Lee is a postdoc with prof. Edoardo Charbon. In 2016, he moved to the Advanced Quantum Architectures group headed by prof. Charbon.

Projects history

A Single-Photon, Time-Resolved Image Sensor for Low-Light-Level Vision

The project aims for a CMOS photon-counting image sensor with high timing resolution

Non-Invasive High Resolution Near-Infrared Imaging for Hemodynamics Monitoring and Tumor Detection

Large high-resolution imaging sensor aimed at the diagnosis and treatment of cancer and functional imaging of the brain

  1. Application of a sub–0.1-mm3 implantable mote for in vivo real-time wireless temperature sensing
    Chen Shi; Victoria Andino-Pavlovsky; Stephen A. Lee; Tiago Costa; Jeffrey Elloian; Elisa E. Konofagou; Kenneth L. Shepard;
    Science Advances,
    Volume 7, Issue 19, pp. eabf6312, 2021. DOI: 10.1126/sciadv.abf6312
    document

  2. Micromachining for Advanced Terahertz: Interconnects and Packaging Techniques at Terahertz Frequencies
    M. Alonso-delPino; C. Jung-Kubiak; T. Reck; C. Lee; G. Chattopadhyay;
    IEEE Microwave Magazine,
    Volume 21, Issue 1, pp. 18-34, Jan. 2020.
    document

  3. A Scalable Cryo-CMOS Controller for the Wideband Frequency-Multiplexed Control of Spin Qubits and Transmons
    Van Dijk, Jeroen Petrus Gerardus; Patra, Bishnu; Subramanian, Sushil; Xue, Xiao; Samkharadze, Nodar; Corna, Andrea; Jeon, Charles; Sheikh, Farhana; Juarez-Hernandez, Esdras; Esparza, Brando Perez; Rampurawala, Huzaifa; Carlton, Brent R.; Ravikumar, Surej; Nieva, Carlos; Kim, Sungwon; Lee, Hyung-Jin; Sammak, Amir; Scappucci, Giordano; Veldhorst, Menno; Vandersypen, Lieven M. K.; Charbon, Edoardo; Pellerano, Stefano; Babaie, Masoud; Sebasti;
    IEEE Journal of Solid-State Circuits,
    Volume 55, Issue 11, pp. 2930-2946, 2020. DOI: 10.1109/JSSC.2020.3024678

  4. 19.1 A Scalable Cryo-CMOS 2-to-20GHz Digitally Intensive Controller for 4×32 Frequency Multiplexed Spin Qubits/Transmons in 22nm FinFET Technology for Quantum Computers
    Patra, Bishnu; van Dijk, Jeroen P. G.; Subramanian, Sushil; Corna, Andrea; Xue, Xiao; Jeon, Charles; Sheikh, Farhana; Juarez-Hernandez, Esdras; Esparza, Brando Perez; Rampurawala, Huzaifa; Carlton, Brent; Samkharadze, Nodar; Ravikumar, Surej; Nieva, Carlos; Kim, Sungwon; Lee, Hyung-Jin; Sammak, Amir; Scappucci, Giordano; Veldhorst, Menno; Vandersypen, Lieven M. K.; Babaie, Masoud; Sebastiano, Fabio; Charbon, Edoardo; Pellerano, Stefano;
    In 2020 IEEE International Solid- State Circuits Conference - (ISSCC),
    pp. 304-306, 2020. DOI: 10.1109/ISSCC19947.2020.9063109

  5. A 5800 μm2 Resistor-based Temperature Sensor with a one-point Trimmed 3σ Inaccuracy of ±1.1 °C from −50 to 105 °C in 65 nm CMOS
    Y-T Lee; W. Choi; T. Kim; S. Song; K. Makinwa; Y. Chae;
    IEEE Solid-State Circuits Letters,
    Volume 2, pp. 67-70, 10 2019. DOI: 10.1109/LSSC.2019.2937441
    Abstract: ... This letter describes a compact resistor-based temperature sensor intended for the thermal monitoring of microprocessors and DRAMs. It consists of an RC poly phase filter (PPF) that is read out by a frequency-locked loop (FLL) based on a dual zero-crossing (ZC) detection scheme. The sensor, fabricated in 65-nm CMOS, occupies 5800 μm 2 and achieves moderate accuracy [±1.2 °C (3σ)] over a wide temperature range (-50 °C to 105 °C) after a one-point trim. This is 2x better than the previous compact resistor-based sensors. Operating from 0.85 to 1.3-V supplies, it consumes 32.5-μA and achieves 2.8-mK resolution in a 1-ms conversion time, which corresponds to a resolution FoM of 0.26 pJ·K 2.

  6. A 5800 μm2 Resistor-based Temperature Sensor with a one-point Trimmed 3σ Inaccuracy of ±1.1 °C from −50 to 105 °C in 65 nm CMOS
    Y-T Lee; W. Choi; T. Kim; S. Song; K. Makinwa; Y. Chae;
    In Proc. European Solid-State Circuits Conference (ESSCIRC),
    9 2019. DOI: 10.1109/ESSCIRC.2019.8902650

  7. 10b 1MS/s column parallel SAR ADC for high speed CMOS image sensors with offset compensation technique using analog summation method
    Jaekyum Lee; Albert Theuwissen;
    In Scientific CMOS Image Sensors Workshop,
    Toulouse, November 2019.

  8. Highly Integrated Submillimeter-Wave Spectrometer for CubeSats
    G. Chattopadhyay; A. Tang; M. Alonso-delPino; C. Jung-Kubiak; J. Kooi; J. Siles; C. Lee;
    In 44th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW THz-2019),
    Paris, France, Sep. 2019.

  9. Planetary/Cometary Submillimeter-Wave Instruments on Ultra-Small Platforms
    G. Chattopadhyay; M. Alonso-delPino; C. Jung-Kubiak; T. Reck; J. Siles; C. Lee; A. Tang;
    In 30th International Symposium on Space Terahertz Technology (ISSTT),
    Gothenburg, Sweden, 2019.

  10. COMETS – Comets Observation & Mapping Enhanced THz Spectrometer at 210-580 GHz: Objectives and Development Status
    J. Siles; J. Kawamura; M. Alonso-delPino; G. Chattopadhyay; C. Lee; R. Lin; M. Choukroun;
    In 30th International Symposium on Space Terahertz Technology (ISSTT),
    Gothenburg, Sweden, 2019.

  11. A Compact Resistor-Based CMOS Temperature Sensor With an Inaccuracy of 0.12 °C (3σ) and a Resolution FoM of 0.43 pJ⋅K^2 in 65-nm CMOS
    W. Choi; Y. Lee; S. Kim; S. Lee; J. Jang; J. Chun; K. A. A. Makinwa; Y. Chae;
    IEEE Journal of Solid-State Circuits,
    Volume 53, Issue 12, pp. 3356-3367, 12 2018. DOI: 10.1109/JSSC.2018.2871622
    Abstract: ... This paper presents a compact resistor-based CMOS temperature sensor intended for dense thermal monitoring. It is based on an RC poly-phase filter (PPF), whose temperature-dependent phase shift is read out by a frequency-locked loop (FLL). The PPF's phase shift is determined by a zero-crossing (ZC) detector, allowing the rest of the FLL to be realized in an area-efficient manner. Implemented in a 65-nm CMOS technology, the sensor occupies only 7000 μm². It can operate from supply voltages as low as 0.85 V and consumes 68 μW. A sensor based on a PPF made from silicided p-poly resistors and metal-insulator-metal (MIM) capacitors achieves an inaccuracy of ±0.12 °C (3σ) from -40 °C to 85 °C and a resolution of 2.5 mK (rms) in a 1-ms conversion time. This corresponds to a resolution figure-of-merit (FoM) of 0.43 pJ·K².

  12. A 0.53pJK2 7000μm2 resistor-based temperature sensor with an inaccuracy of ±0.35°C (3σ) in 65nm CMOS
    W. Choi; Y.T. Lee; S. Kim; S. Lee; J. Jang; J. Chun; K.A.A. Makinwa; Y. Chae;
    In Dig. Techn. Papers IEEE International Solid-State Circuits Conference (ISSCC),
    pp. 322-324, 2 2018. DOI: 10.1109/ISSCC.2018.8310314

  13. Integrated Micro-Lens Antennas for THz Heterodyne Receivers
    M. Alonso-delPino; C. Jung-Kubiak; T. Reck; C. Lee; G. Chattopadhyay;
    In 29th International Symposium on Space Terahertz Technology (ISSTT),
    Pasadena, California, USA, 2018.

  14. Antennas for Space Instruments from GHz to THz
    G. Chattopadhyay; M. Alonso-delPino; C. Jung-Kubiak; T. Reck; C. Lee; N. Chahat; I. Mehdi;
    In 12th European Conference on Antennas and Propagation,
    London, United Kingdom, April 2018.

  15. Development of Silicon Micromachined Microlens Antennas at 1.9 THz
    M. Alonso-delPino; T. Reck; C. Jung-Kubiak; C. Lee; G. Chattopadhyay;
    IEEE Transactions on Terahertz Science and Technology,
    Volume 7, Issue 2, pp. 191-198, March 2017.
    document

  16. Aperture Antennas for Millimeter and Sub-Millimeter Wave Applications
    G. Chattopadyay; M. Alonso-delPino; N. Chahat; D. Gonzalez-Ovejero; C. Lee; T. Reck;
    Boriskin, A.; Sauleau, R. (Ed.);
    Springer, Chapter 10, , Nov. 2017. DOI: 10.1007/978-3-319-62773-1

  17. Interconnect and packaging technologies for terahertz communication systems
    G. Chattopadhyay; T. Reck; C. Jung-Kubiak; M. Alonso-delPino; C. Lee;
    In 11th European Conference on Antennas and Propagation,
    Paris, France, pp. 1646-1649, March 2017.

  18. Corrugated (2 × 2) silicon platelets horn antenna array at 560 GHz
    C. Lee; D. Gonzalez-Ovejero; M. Alonso-delPino; T. Reck; A. Peralta; I. Mehdi; G. Chattopadhyay 2017 42nd International Conference on Infrared, Millimeter,; Terahertz Waves (IRMMW-THz), Cancun, 2017, pp. 1-1.;
    In 42nd International Conference on Infrared, Millimeter,and Terahertz Waves,
    Cancun, Mexico, Aug. 27-Sep. 1 2017.

  19. Micro-lens antenna integrated in a silicon micromachined receiver at 1.9 THz
    M. Alonso-delPino; T. Reck; C. Lee; C. Jung-Kubiak; N. Llombart; I. Mehdi; G. Chattopadhyay;
    In Proc. 10th European Conference on Antennas and Propagation,
    Davos, Switzerland, 10-15 April 2016. 10.1109/eucap.2016.7481287.
    document

  20. A Low-Power Low-Mass Dual-Polarization Sensitive Submillimeter-Wave Radiometer/Spectrometer
    G. Chattopadhyay; T. Reck; T.C. Jung-Kubiak; D. Gonzalez-Ovejero; C. Lee; M. Alonso-Del Pino;
    In 3rd International Workshop on Instrumentation for Planetary Mission,
    Pasadena, California, USA, Oct. 2016.

  21. Micro-lens antenna integrated in a silicon micromachined receiver at 1.9 THz
    M. Alonso-delPino; T. Reck; C. Lee; C. Jung-Kubiak; N. Llombart; I. Mehdi; G. Chattopadhyay;
    In 10th European Conference on Antennas and Propagation,
    Davos, Switzerland, 2016.

  22. Silicon micromachined terahertz spectrometer instruments
    G. Chattopadhyay; T. Reck; C. Jung-Kubiak; D. Gonzalez-Ovejero; C. Lee; M. Alonso-DelPino;
    In 41st International Conference on Infrared, Millimeter,and Terahertz Waves,
    Copenhagen, Denmark, 2016.

  23. A first single-photon avalanche diode fabricated in standard SOI CMOS technology with a full characterization of the device
    M.-J. Lee; P. Sun; E. Charbon;
    Optics Express,
    Volume 23, Issue 10, pp. 13200-13209, May 2015.
    document

  24. A 3 ppm 1.5 x 0.8 mm2 1.0 µA 32.768 kHz MEMS-based oscillator
    S. Zaliasl; J.C. Salvia; G.C. Hill; L. Chen; K. Joo; R. Palwai; N. Arumugam; M. Phadke; S. Mukherjee; HC Lee; C Grosjean; PM Hagelin; S Pamarti; TS Fiez; K.A.A. Makinwa; A. Partridge; V. Menon;
    IEEE Journal of Solid State Circuits,
    Volume 50, Issue 1, pp. 291-302, 2015. Available online 3-11-2014.

  25. Evaluation of Resistance for Chip on Chip Bonding using "AlSi/TiN" bumps with ACP
    M. Akiyama; D. Zhang; M.-J. Lee; E. Charbon;
    In JSAP Spring Meeting,
    Mar. 2015.
    document

  26. Characterization of Single-Photon Avalanche Diodes in Standard 140-nm SOI CMOS Technology
    M.-J. Lee; P. Sun; E. Charbon;
    In International Image Sensor Workshop,
    Jun. 2015.
    document

  27. A 0.02mm2 Embedded Temperature Sensor with ±2°C Inaccuracy for Self-Refresh Control in 25nm Mobile DRAM
    Y.Y. Kim; W. Choi; J. Kim; S. Lee; S Lee; H. Kim; K.A.A. Makinwa; Y. Chae; TW Kim;
    In W Pribyl; F Dielacher; G Hueber (Ed.), Proc. European Solid-State Circuits Conference (ESSCIRC),
    IEEE, pp. 267-270, 2015.

  28. Terahertz antenna arrays with silicon micromachined-based microlens antenna and corrugated horns
    C. Lee; G. Chattopadhyay; E. Decrossas; A. Peralta; I. Mehdi; C.A. Leal-Sevillano; M. Alonso-DelPino; N. Llombart;
    In Antenna Technology (iWAT), 2015 International Workshop on,
    Seoul, South Korea, pp. 70-73, 2015.

  29. Electrical-thermal-luminous-chromatic model of phosphor-converted white light-emitting diodes
    Huaiyu Ye; Sau Wee Koh; Cadmus Yuan; Henk van Zeijl; Alexander W.J. Gielen; Shi-Wei Ricky Lee; GuoQi Zhang;
    Applied Thermal Engineering,
    Volume 63, Issue 2, pp. 588-597, 2014.

  30. Linear-Mode Avalanche Photodiodes in Standard CMOS Technology
    Myung-Jae Lee; Woo-Young Choi; Edoardo Charbon;
    In International Conference on Optoelectronics and Microelectronics Technology and Application,
    Nov. 2014.

  31. A 1.55×0.85mm2 3ppm 1.0μA 32.768kHz MEMS-based oscillator
    S.Z. Asl; S. Mukherjee; W. Chen; Kimo Joo; R. Palwai; N. Arumugam; P. Galle; M. Phadke; C Grosjean; J.C. Salvia; H Lee; S Pamarti; TS Fiez; K.A.A. Makinwa; A. Partridge; V. Menon;
    In LC Fujino; J Anderson; {et al} (Ed.), Digest of Technical Papers - 2014 IEEE International Solid-State Circuits Conference,
    IEEE, pp. 226-227, 2014. Harvest Session 12. Sensors, MEMS and Displays 12.9.

  32. On the development of silicon micromachined lens antennas for THz integrated heterodyne arrays
    N. Llombart; M. Alonso-delPino; C. Lee; G. Chattopadhyay; C. Jung-Kubiak, I. Mehdi;
    In 39th International Conference on Infrared, Millimeter,and Terahertz Waves (IRMMW-THz),
    Tucson, Arizona, USA, 2014.

  33. 6.4 mm Diameter silicon micromachined lens for THz dielectric antenna
    C. Lee; G. Chattopadhyay; M. Alonso-delPino; N. Llombart;
    In 39th International Conference on Infrared, Millimeter,and Terahertz Waves (IRMMW-THz),
    Tucson, Arizona, USA, 2014.

  34. Terahertz antennas with silicon micromachined front-end
    G. Chattopadhyay; T. Reck; C. Jung-Kubiak; C. Lee; J. Siles; N. Chahat; K. Cooper; E. Schlecht; M. Alonso-delPino; I. Mehdi;
    In 8th European Conference on Antennas and Propagation (EuCAP),
    The Hague, Netherlands, April 2014.

  35. Silicon Micromachined Lens Antenna for THz Integrated Heterodyne Arrays
    N. Llombart; C. Lee; M. Alonso-delPino; G. Chattopadhyay; C. Jung-Kubiak; L. Jofre; I. Mehdi;
    IEEE Transactions on Terahertz Science and Technology,
    Volume 3, Issue 5, pp. 515-523, September 2013.
    document

  36. Design guidelines for a terahertz silicon micro-lens antenna
    M. Alonso-delPino; N. Llombart; G. Chattopadhyay; C. Lee; C. Jung-Kubiak; L. Jofre; I. Mehdi;
    IEEE Antennas and Wireless Propagation Letters,
    2013.
    document

  37. Silicon Microlens Antenna for Multi-pixel THz Heterodyne Detector Arrays
    C. Lee; G. Chattopadhyay; C. Jung; T. Reck; K. Cooper; A. Peralta; R. Lin; I. Mehdi; M. Alonso-delPino; N. Llombart;
    In 7th European Conference on Antennas and Propagation (EuCAP),
    Gothenburg, Sweden, pp. 1745-1746, April 2013.

  38. A grating-based circular polarization duplexer for submillimeter-wave transceivers
    K. B. Cooper; N. Llombart; G. Chattopadhyay; R. J. Dengler; R.E. Cofield; C. Lee; S. Filchenkov; E. Koposova;
    IEEE Microwave and Wireless Components Letters,
    Volume 22, Issue 3, pp. 108-110, March 2012.
    document

  39. A 240-frames/s 2.1-Mpixel CMOS image sensor with columnshared cyclic adc's
    S. Lim; J. Cheon; Y. Chae; W. Jung; D.H. Lee; M. Kwon; S. Yoo; S. Ham; G. Han;
    IEEE Journal of Solid State Circuits,
    Volume 46, Issue 9, pp. 2073-2083, 2011.

  40. A 2.1 M pixels, 120 frame/s CMOS image sensor with column-parallel ¿¿ ADC Architecture
    Y. Chae; J. Cheon; S. Lim; M. Kwon; K. Yoo; W. Jung; D.H. Lee; S. Ham; G. Han;
    IEEE Journal of Solid State Circuits,
    Volume 46, Issue 1, pp. 236-247, 2011.

  41. Silicon Micro-Lens Antennas for THz integrated arrays
    M. Alonso; N. Llombart; C. Lee; C. Jung; G. Chattopadhyay; L. Jofre; I. Mehdi;
    In 36th International Conference on Infrared, Millimeter and Terahertz Waves,
    October 2011.

  42. Silicon micromachined microlens array for THz antennas
    C. Lee; N. Llombart; C. Jung; G. Chattopadhyay; I. Mehdi;
    In 36th International Conference on Infrared, Millimeter and Terahertz Waves,
    October 2011.

  43. Silicon based antennas for THz integrated arrays
    N. Llombart; B. Thomas; M. Alonso; C. Lee; G. Chattopadhyay; L. Jofre; I. Mehdi;
    In 5th European Conference on Antennas and Propagation,
    April 2011.

  44. An integrated arrays on silicon at terahertz frequencies
    G. Chattopadhyay; C. Lee; C. Jung; R. Lin; A. Peralta; I. Mehdi; N. Llombart; B. Thomas;
    In IEEE Antennas and Propagation Society International Symposium,
    July 2011.

  45. A 2.1 Mpixel 120 frames/s CMOS image sensor with column parallel ¿¿ ADC architecture
    Y. Chae; J. Cheon; S. Lim; D. Lee; M. Kwon; K. Yoo; W. Jung; D.H. Lee; S. Ham; G. Han;
    In U Moon (Ed.), IEEE International Solid State Circuits Conference,
    IEEE, pp. 394-395, 2011.

  46. Silicon Micro-Lens Antennas for THz integrated arrays
    M. Alonso-delPino; N. Llombart; C. Lee; C. Jung; G. Chattopadhyay; L. Jofre; I. Mehdi;
    In 36th International Conference on Infrared, Millimeter,and Terahertz Waves (IRMMW-THz),
    Houston, Texas, Oct. 2011.

  47. Silicon based antennas for THz integrated arrays
    N. Llombart; B. Thomas; M. Alonso-delPino; C. Lee; G. Chattopadhyay; L. Jofre; I. Mehdi;
    In 5th European Conference on Antennas and Propagation (EuCAP),
    Rome, Italy, April 2011.

  48. Apparatus and method for sigma-delta analog to digital conversion
    Y. Chae; I. Lee; J. Cheon; S. Ham; G. Han;
    2011.

  49. Apparatus and method for sigma-delta analog to digital conversion
    Y. Chae; I. Lee; J. Cheon; S. Ham; G. Han;
    Patent, US 7,916,061, 2011.

  50. Uniformity of Concentration Factor and Back Focal Length in Molded Polymer Microlens Arrays
    S. Donati; E. Randone; M. Fathi; J.-H. Lee; E. Charbon; G. Martini;
    In Conference on Lasers and Electro-Optics (CLEO),
    2010.
    document

  51. Radiometer-on-a-chip: A path towards super-compact submm imaging arrays
    I. Mehdi; B. Thomas; C. Lee; R. Lin; G. Chattopadhyay; J. Gill; N. Llombart; K. B. Cooper; P. H. Siegel;
    In SPIE Conferece on Defense, Security and Sensing,
    Orlando, FL, USA, April 2010.

  52. Micro-lens antenna for integrated THz arrays
    N. Llombart; G. Chattopadhyay; C. Lee;
    In iWAP,
    Lisbon, Portugal, March 2010.

  53. A single-chip CMOS smoke and temperature sensor for an intelligent fire detector
    J. Cheon; J. Lee; I. Lee; Y. Chae; Y. yoo; G. Han;
    IEEE Sensors Journal,
    Volume 9, Issue 8, pp. 914-921, 2009.

  54. Smart CMOS image sensor with high SBR and subpixel resolution for light-selection-based range finding
    J. Cheon; Y. Chae; D. Kim; S. Lim; I. Lee; K. Lee; D.J. Kim; G. Han;
    IEEE Electron Device Letters,
    Volume 56, Issue 11, pp. 2546-2555, 2009.

  55. A 600 GHz imaging radar for concealed objects detection
    T. Bryllert; R. J. Dengler; K. B. Cooper; N. Llombart; G. Chattopadhyay; E. Schlecht; J. Gill; C. Lee; A. Skalare; I. Mehdi; P. H. Siegel;
    In IEEE Radar Conference,
    Pasadena, CA, USA, May 2009.
    document

  56. Penetrating 3D imaging at 4 and 25 meter range using a submillimeter-wave radar
    K. B. Cooper; R. J. Dengler; N. Llombart; T. Bryllert; G. Chattopadhyay; E. Schlecht; J. Gill; C. Lee; A. Skalare; I. Mehdi; P. H. Siegel;
    IEEE Transactions on Microwave Theory and Techniques,
    Volume 56, Issue 12, pp. 2771-2778, December 2008.
    document

  57. Concealed object contrast enhancement using radar methods in a submillimeter-wave active imager
    K. B. Cooper; R. J. Dengler; N. Llombart; T. Bryllert; G. Chattopadhyay; E. Schlecht; J. Gill; C. Lee; A. Skalare; I. Mehdi; P. H. Siegel;
    In 33th International Conference on Infrared, Millimeter and Terahertz Waves,
    September 2008.

  58. Infinite bandwidth long slot array antenna
    A. Neto; J.J. Lee;
    IEEE Antennas and Wireless Propagation Letters,
    Volume 4, pp. 75-78, 2005.
    document

  59. Comments and reply on \"Infinite bandwidth long slot array antenna\"
    A. Neto; J.J. Lee;
    IEEE Antennas and Wireless Propagation Letters,
    Volume 4, Issue 1, pp. 497, 2005.
    document

  60. An Interference Rejection Filter for an Ultra-Wideband Quadrature Downconversion Autocorrelation Receiver
    S. Bagga; S.A.P. Haddad; K. van Hartingsveldt; S. Lee; W.A. Serdijn; J.R. Long;
    In Proc. International Symposium on Circuits and Systems (ISCAS),
    Kobe, Japan, IEEE, May 23-26 2005.
    document

  61. An interference rejection filter for an ultra-wideband quadrature downconversion autocorrelation receiver
    S. Bagga; S.A.P. Haddad; K. van Hartingsveldt; SS. Lee; W.A. Serdijn; J.R. Long;
    In s.n. (Ed.), Proceedings of IEEE international symposium on circuits and systems (ISCAS 2005),
    IEEE, pp. 5357-5360, 2005. Editor onbekend JH.

  62. A quadrature downconversion autocorrelation receiver architecture for UWB
    SS. Lee; S. Bagga; W.A. Serdijn;
    s.n., , pp. 1-5, 2004. ed. isniet bekend.

  63. A quadrature downconversion autocorrelation receiver architecture for UWB
    S. Lee; S. Bagga; W.A. Serdijn;
    In Proc. Workshop on Wireless Circuits and Systems (WoWCAS),
    Vancouver, Canada, pp. 49-50, May 21-22 2004.

  64. A Quadrature Downconversion Autocorrelation Receiver Architecture for UWB
    S. Lee; S. Bagga; W.A. Serdijn;
    In Proc. UWBST & IWUWBS,
    Kyoto, Japan, May 19-21 2004.
    document

  65. FEM study on the dependence of resonant frequency shift on mechanical stress of thin film resonator
    SS. Lee; R. Kazinczi; J.R. Mollinger; M.J. Vellekoop; A. Bossche;
    In SAFE - ProRISC - SeSens 2001: proceedings. Semiconductor Advances for Fututre Electronics - Program for Research on Integrated Systems and Circuits - Semiconductor Sensor and Actuator Technology,
    STW Technology Foundation, pp. 817-820, 2001.

  66. Photodiode structures to measure the shape of particles and cells
    J.H. Nieuwenhuis; SS. Lee; J. Bastemeijer; A. Bossche; M.J. Vellekoop;
    In SAFE - ProRISC - SeSens 2001: proceedings. Semiconductor Advances for Future Electronics - Program for Research on Integrated Systems and Circuits - Semiconductor Sensor and Actuator Technology,
    STW Technology Foundation, pp. 839-842, 2001.

  67. Particle-shape sensing-elements for integrated flow cytometer
    J.H. Nieuwenhuis; SS. Lee; J. Bastemeijer; M.J. Vellekoop;
    In {JM Ramsey}; {A Berg}, {van den} (Ed.), Proceedings,
    Kluwer, pp. 357-358, 2001.

  68. Fast floating point vectoring algorithms and performance evaluation
    Jeong-A Lee; K.-J. van der Kolk; E.F.A. Deprettere;
    In Thirty-Third Asilomar Conference on Signals, Systems, and Computers,
    Piscataway, NJ, USA, IEEE, pp. 1356-60 vol.2, 1999.

  69. Partial SOI Isolation Structure for Reduced Bipolar Transistor Parasitics
    J.N. Burghartz; J.D. Cressler; J.D. Warnock; R.C. McIntosh; K.A. Jenkins; J.Y.C. Sun; J.H. Comfort; J.M.C. Stork; C.L. Stanis; W. Lee; D.D. Danner;
    IEEE Electron Device Letters,
    Volume 13, Issue 8, pp. 424-426, 1992.

  70. Single Crystal Emitter Cap for Epitaxial Si- and SiGe-Base Transistors
    J.H. Comfort; E.F. Crabbe; J.D. Cressler; W. Lee; J.Y.-C. Sun; J. Malinowski; M.M. DAgostino; J.N. Burghartz; J.M.C. Stork; B.S. Meyerson;
    In IEEE International Electron Devices Meeting (IEDM),
    pp. 857-860, 1991.

  71. Profile Leverage in Self-Aligned Epitaxial Si or SiGe Base Bipolar Transistors
    J.H. Comfort; G.L. Patton; J.D. Cressler; W. Lee; E.F. Crabbe; B.S. Meyerson; J.Y.-C. Sun; J.M.C. Stork; P.-F. Lu; J.N. Burghartz; et al;
    In IEEE International Electron Devices Meeting (IEDM),
    pp. 21-24, 1990.

BibTeX support

Last updated: 26 Dec 2018

Myung-Jae Lee

Alumnus
  • Left in 2016
  • Now: Postdoc at the Advanced Quantum Architectures group headed by prof. Charbon
  • Personal webpage