RESEARCH
[News article in English] Dr. Ercan receives Delft Women in Science (DEWIS) award in Advanced Career Category (2025)
[News article in English] Dr. Ercan receives Quantum Delta NL Centre for Quantum & Society Grant (2024)
[News article in Turkish] Dr. Ercan is awarded Boğaziçi University-MIT MISTI Seed Fund (2018)
Dr. Ercan’s research focuses on the design, performance analysis, and accessibility of emerging computing paradigms, with an emphasis on quantum and nanoelectronic circuits. Her work integrates physical-information-theoretic approaches to evaluate the fundamental efficiency limits of digital nanocomputing paradigms, including Nano-Application Specific Integrated Circuits (NASICs), Quantum-dot Cellular Automata (QCA), Brownian circuits, microring resonator-based optical logic, and solid-state quantum logic circuits. In addition to theoretical and computational modeling, she collaborates with experimental researchers to test fundamental performance bounds against real-world inefficiencies.
Beyond these foundational studies, Dr. Ercan is actively engaged in making quantum electronics more accessible to young researchers. She develops educational materials and initiatives that bridge the gap between research and undergraduate learning, fostering early exposure to quantum technologies. She has contributed to the QWorld initiative through undergraduate-led research projects and is a recipient of the Quantum Delta NL Grassroots Grant, supporting community-driven quantum education efforts. Previously, she was involved in the Quantum Technologies Education for Everyone (QuTE4E) project, which focused on engaging diverse audiences—including students, educators, industry experts, and policymakers—through interactive outreach methods such as hackathons, game jams, and live panels. Her recent work includes curriculum development, interactive tools, and outreach strategies for quantum technology education,
Dr. Ercan’s publications can be reached via:
ORCID-ID: orcid.org/0000-0003-1339-9703
Thomson Reuters ResearcherID: M-7061-2014.
Dr. Ercan’s citations on Google Scholar.
List of Student Collaborators
Current Undergraduate Student Collaborators: Efe Karakoca (BSc, EE & Physics, Boğaziçi University), Alper Güven (BSc, EE, Boğaziçi University)
Past Graduate Student Collaborators: Zeynep Duygu Sütgöl (PhD, EE, Boğaziçi University), Enes Suyabatmaz (MSc, EE, Boğaziçi University), Angsar Manatuly (MSc, Physics, Koç University)
Past Undergraduate Student Collaborators: Fatih Dinç (BSc, EE, Boğaziçi University), Ozan Yakar (BSc, EE, Boğaziçi University), Seçkin Barışık (BSc, EE, Boğaziçi University), Faik Ozan Özhan (BSc, EE, Boğaziçi University), Zeynep Pelin Yıldırım (BSc, EE, Boğaziçi University), Asaf Toprakçı (BSc, EE, Bilkent University), Pınara Evren Korkmazgil (BSc, Physics, Boğaziçi University), Cem Nurlu (BSc, Physics, Boğaziçi University), Samantha van Rijs (BSc, EE, TU Delft), Clio Feng (BSc, CS, TU Delft)
Book Chapters
[1] S. Faletic, P. Bitzenbauer, M. Bondani, M. Chiofalo, S. Goorney, K. Krijtenburg-Lewerissa, O. Mishina, R. Muller, G. Pospiech, İ. Ercan, et. al., “Contributions from Pilot Projects in Quantum Technology Education as Support Action to Quantum Flagship,” Challenges in Physics Education (CPE), Springer Nature, p. 219-238 20 p. (Challenges in Physics Education; vol. Part F3953), December 17, 2024. https://doi.org/10.1007/978-3-031-72541-8_15
[2] A. Vartanyan, T. Arman, İ. Ercan, and A. D. Pinçe, “Boğaziçi Üniversitesi’nde Cinsel Tacizi Önleme Çalışmaları Sürecinde Şemsa Özar’la Yol Arkadaşlığımız (Working with Şemsa Özar in Sexual Harassment Prevention Committee at Boğaziçi University),” Feminizm, Ekoloji, Toplumsal Direniş (Feminism, Ecology, Collective Resistance), Eds. H. Çağlayan and K. A. Türker, İstanbul, 2022. ISBN: 978-605-260-367-3 [News article in Turkish]
[3] İ. Ercan and N. Anderson, “Modular Dissipation Analysis for QCA,” Field-Coupled Nanocomputing, N.G. Anderson and S. Bhanja. Eds. Lecture Notes in Computer Science, vol. 8280, pp. 357-375, Heidelberg, 2014. DOI:10.1007/978-3-662-43722-3_15
Selected Peer-Reviewed Journal Articles
[1] Z. C. Seskir, P. Migdal, C. A. Weidner, A. Anupam, N. Case, N. Davis, C. Decaroli, İ. Ercan, C. Foti, P. Gora, K. Jankiewicz, B. R. La Cour, J. Y. Malo, A. Naeemi, L. Nita, N. Parvin, F. Scafirimuto, J. Friis Sherson, E. Surer, J. R. Wootton, L. Yeh, O. Zabello and M. Chiofalo. “Quantum Games and Interactive Tools for Quantum Technologies Outreach and Education: A Review and Experiences from the Field.” Optical Engineering, 61(8), 081809 2022. https://doi.org/10.1117/1.OE.61.8.081809
[2] İ. Ercan, Z. D. Sütgöl, and F. O. Özhan, “Physical Limitations on Fundamental Efficiency of SET-Based Brownian Circuits,” Entropy, vol. 23 no 4, 406, 2021. doi.org/10.3390/e23040406
[3] S. Barışık and İ. Ercan, “Thermodynamic Cost of Edge Detection in Artificial Neural Network (ANN)- Based Processors,” International Journal of Parallel, Emergent and Distributed Systems, Published online 29 October 2020. doi.org/10.1080/17445760.2020.1836639
[4] F. Dinç, İ. Ercan, and A. M. Brańczyk “Exact Markovian and non-Markovian time dynamics in waveguide QED: collective interactions, bound states in continuum, superradiance and subradiance,” Quantum, vol. 3, p. 213, 9 December, 2019. doi.org/10.22331/q-2019-12-09-213
[5] O. Yakar, and İ. Ercan, “Logic Threshold for Microring Resonator-based BDD Circuits: Physical and Operational Analyses,” Turkish Journal of Engineering, Vol. 3, issue 4, p.189, October 2019. DOI:10.31127/tuje.537871
[6] F. Dinç and İ. Ercan, “Single Photon Two-Level Atom Interactions in 1-D Dielectric Waveguide: Quantum Mechanical Formalism and Applications,” Optical and Quantum Electronics (OQEL), 50: 390, 15 October, 2018. DOI:10.1007/s11082-018-1658-y
[7] F. Dinç and İ. Ercan, “Quantum Mechanical Treatment of Two-Level Atoms Coupled to Continuum with an Ultraviolet Cutoff,” Journal of Physics A: Mathematical and Theoretical, vol. 51, no 35, p. 355, 2018. DOI:10.1088/1751-8121/aad165
[8] İ. Ercan and E. Suyabatmaz “Fundamental Energy Limits of SET-Based Brownian NAND and Half-Adder Circuits,” European Physical Journal B, vol. 91 p. 113, 2018. DOI:10.1140/epjb/e2018-80619-6
[9] İ. Ercan and N. Anderson, “Heat Dissipation in Nanocomputing: Lower Bounds from Physical Information Theory,” IEEE Transactions on Nanotechnology, vol. 12, no. 6, pp. 1047 - 1060, 2013. DOI:10.1109/TNANO.2013.2276938
[10] N. Anderson, İ. Ercan and N. Ganesh, “Toward Nanoprocessor Thermodynamics,” IEEE Transactions on Nanotechnology, vol. 12, no. 6, pp. 902 - 909, 2013. DOI:10.1109/TNANO.2013.2260352
[11] İ. Ercan and N. Anderson, “Tight-biding Implementation of the Microcanonical Approach to Transport in Nanoscale Conductors: Generalization and Analysis,” Journal of Applied Physics, vol. 107 no. 12, pp. 124318-13, 2010. DOI:10.1063/1.3388055
[12] İ. Ercan and N. Anderson, “Current and Information in the Microcanonical Picture of Nanoscale Transport,” Journal of Computational Electronics, vol. 7, no 3., pp. 466 - 470, 2008. DOI:10.1007/s10825-008- 0234-2
[13] İ. Ercan and S. Katırcıoğlu, “The Electronic Structure of Capped and Uncapped CdS Nanoparticles,” Journal of Nanoscience and Nanotechnology 8, pp. 645 - 649, 2008. DOI: 10.1166/jnn.2008.A219
Conference Proceedings
[1] S. van Rijs, İ. Ercan, A. Vladimirescu, and F. Sebastiano "Single-Electron-Transistor Compact Model for Spin-Qubit Readout," Proceedings of SMACD’23: International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design, 3-5 July 2023.
[2] O. Yakar, Y. Nie, K Wada, A. Agarwal and İ. Ercan, “Energy Efficiency Analyses of Microring-Resonator-Based BDD Logic Circuits,” Proceedings of the IEEE International Conference on Rebooting Computing, 28 November, 2019. doi:10.1109/ICRC.2019.8914708
[3] İ. Ercan, O. Susam, M. Altun, and M. H. Cılasun, “Synthesis and Fundamental Energy Analysis of Fault- ¨ Tolerant CMOS Circuits,” IEEExplore Proceedings of SMACD’17: International Conference on Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit Design, 12-15 June 2017. DOI:10.1109/SMACD.2017.7981586
[4] İ. Ercan, “Fundamental Energy Dissipation Limits in Logic Circuits,” ICT Energy Letters, vol. 12, pp. 3-4, August 2016. (Invited Paper)
[5] N. Anderson, İ. Ercan and N. Ganesh, “Toward Nanoprocessor Thermodynamics,” Proceedings of the 12th IEEE Conference on Nanotechnology (IEEE NANO, 2012), 2012. DOI:10.1109/NANO.2012.6322186 (First Place Best Oral Conference Paper)
[6] İ. Ercan and N. Anderson, “Heat Dissipation in Nanocomputing: Theory and QCA Application,” Proceedings of the 11th IEEE Conference on Nanotechnology (IEEE NANO, 2011), pp.1289-1294, 2011. DOI:10.1109/NANO.2011.6144346 (Best Paper Award)
[7] İ. Ercan, M. Rahman and N. Anderson, “Determining Fundamental Heat Dissipation Bounds for TransistorBased Nanocomputing Paradigms,” NANOARCH’11: IEEE/ACM Symposium on Nanoscale Architectures, Proceedings of the 2011 IEEE/ACM International Symposium on Nanoscale Architectures, pp. 169 - 174, 2011. DOI:10.1109/NANOARCH.2011.5941500
[8] İ. Ercan and N. Anderson, “Structure Dependence of Nanoconductor Current in a Tight-Binding Microcanonical Model,” NANO’08: Proc. of the 8 th IEEE Conference on Nanotechnology (IEEE NANO, 2008), pp. 331 - 334. DOI:10.1109/NANO.2008.104
[9] İ. Ercan and N. Anderson, “Structure Dependence of Nanoconductor Current in a Microcanonical Transport Model,” Proceedings of the 17th Annual Connecticut Symposium on Microelectronics and Optoelectronics, pp. 39 - 40, April, 2008.