MSc Wu

PhD student
Electronic Circuits and Architectures (ELCA), Department of Microelectronics

Expertise: Hardware-Software Co-Design, Signal Processing

Biography

Ms. Yizhuo Wu was born in Shanxi, China, in 1999. She received B.Sc degree in University of Electronic and Science of China (UESTC) in 2021. She obtained her M.Sc. degree in Microelectronics at TU Delft in 2023. She is now a PhD student supervised by Dr. Chang Gao in the Lab of Efficient circuits & systems for Machine Intelligence (EMI).

Publications

  1. Organic Mixed Ionic–Electronic Conductors Based on Tunable and Functional Poly(3,4-ethylenedioxythiophene) Copolymers
    Wu, Jiaxin; Gu, Modi; Travaglini, Lorenzo; Lauto, Antonio; Ta, Daniel; Wagner, Pawel; Wagner, Klaudia; Zeglio, Erica; Savva, Achilleas; Officer, David; Mawad, Damia;
    ACS Applied Materials \& Interfaces,
    Volume 16, Issue 22, pp. 28969-28979, 2024. PMID: 38778796. DOI: 10.1021/acsami.4c03229
    document

  2. Effects of Current Filaments on IGBT Avalanche Robustness: A Simulation Study
    Jingping Zhang; Houcai Luo; Huan Wu; Bofeng Zheng; Xianping Chen; Guoqi Zhang; Paddy French; Shaogang Wang;
    Electronics,
    2024. DOI: https://doi.org/10.3390/electronics13122347
    Keywords: ... IGBT; avalanche; current filament; robustness; SOA.

    Abstract: ... With the increase in voltage level and current capacity of the insulated gate bipolar transistor (IGBT), the avalanche effect has become an important factor limiting the safe operating area (SOA) of the device. The hole injection into the p/n junction on the backside of the IGBT after avalanche is the main feature that distinguishes the avalanche effect from other devices. In this paper, the avalanche breakdown characteristics of IGBT and the nature of current filament are investigated using theoretical analysis and numerical simulation, and the underlying physical mechanism controlling the nature of current filaments is revealed. The results show that the hole injection on the backside of the IGBT leads to an additional negative differential resistance (NDR) branch on the avalanche breakdown curve. The device’s common-base current gain, αpnp, is a crucial factor in determining the current filament. As αpnp increases, the avalanche-induced current filament becomes stronger and slower, resulting in weaker avalanche robustness of the device.

  3. Classification of Tracked Objects Using Multiple Frame Processing for Automotive Radar
    Hassan, Mujtaba; Fioranelli, Francesco; Yarovoy, Alexander; Chen, Lihui; Ravindran, Satish; Wu, Ryan;
    In 2024 21st European Radar Conference (EuRAD),
    pp. 35-38, 2024. DOI: 10.23919/EuRAD61604.2024.10734928

  4. Compressive Sensing Based High-Resolution DoA Estimation by Beamspace Covariance Gradient Descent
    Yu, Zhibin; Abdelkader, Ahmed; Wu, Xiaofeng; Lamoral Coines, Adrián; Haardt, Martin;
    In 2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP),
    pp. 321-325, 12 2023. DOI: 10.1109/CAMSAP58249.2023.10403481

  5. Low Leakage and High Forward Current Density Quasi-Vertical GaN Schottky Barrier Diode With Post-Mesa Nitridation
    X. Kang; Y. Sun; Y. Zheng; K. Wei; H. Wu; Y. Zhao; Xu Liu; GuoQi Zhang;
    IEEE Transactions on Electron Devices,
    Volume 68, Issue 3, pp. 1369-1373, 2021. DOI: 10.1109/TED.2021.3050739

  6. P-type β-Ga2O3 metal-semiconductor-metal solar-blind photodetectors with extremely high responsivity and gain-bandwidth product
    Z.X. Jiang; Z.Y. Wu; C.C. Ma; J.N. Deng; H. Zhang; Y. Xu; J.D. Ye; Z.L. Fang; GuoQi Zhang; J.Y. Kang; T.-Y. Zhang;
    Materials Today Physics,
    Volume 14, pp. 100226, 2020. DOI: 10.1016/j.mtphys.2020.100226
    document

  7. High performance mixed potential type NO2 gas sensor based on porous YSZ layer formed with graphite doping
    Hong, H.; Jianwen Sun; Wu, C.; Liu, Z.;
    Sensors (Switzerland),
    2019. DOI: 10.3390/s19153337

  8. Oxygen-based digital etching of AlGaN/GaN structures with AlN as etch-stop layers
    Wu, J.; Lei, S.; Cheng, W-C.; Sokolovskij, R.; Wang, Q.; Xia, G. M.; Yu, H.;
    Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films,
    2019. DOI: 10.1116/1.5115427

  9. Review of the recent progress on GaN-based vertical power Schottky barrier diodes (SBDs)
    Yue Sun; Kang, X.; Zheng, Y.; Lu, J.; Tian, X.; Wei, K.; Wu, H.; Wang, W.; Liu, X. an GuoQi Zhang;
    Electronics (Switzerland),
    2019. DOI: 10.3390/electronics8050575

  10. Au-based and Au-free Ohmic Contacts to AlGaN/GaN Structures on Silicon or Sapphire Substrates
    Wenmao Li; Jian Zhang; Robert Sokolovskij; Yumeng Zhu; Yongle Qi; Xinpeng Lin; Jingyi Wu; Lingli Jiang; Hongyu Yu;
    In 18th International Workshop on Junction Technology,
    2018.

  11. A compact sensor readout circuit with temperature, capacitance and voltage sensing functionalities
    B. Yousefzadeh; W. Wu; B. Buter; K. Makinwa; M. Pertijs;
    In NXP Low-Power Design Conference,
    NXP, June 2017.
    Abstract: ... This paper presents an area- and energy-efficient sensor readout circuit, which can precisely digitize temperature, capacitance and voltage. The three modes use only on-chip references and employ a shared zoom ADC based on SAR and ΔΣ conversion to save die area. Measurements on 24 samples from a single wafer show a temperature inaccuracy of ±0.2 °C (3σ) over the military temperature range (-55°C to 125°C). The voltage sensing shows an inaccuracy of ±0.5\%. The sensor also offers 18.7-ENOB capacitance-to-digital conversion, which handles up to 3.8 pF capacitance with a 0.76 pJ/conv.-step energy-efficiency FoM. It occupies 0.33 mm² in a 0.16 μm CMOS process and draws 4.6 μA current from a 1.8 V supply.

  12. A Compact Sensor Readout Circuit with Combined Temperature, Capacitance and Voltage Sensing Functionality
    B. Yousefzadeh; W. Wu; B. Buter; K. A. A. Makinwa; M. Pertijs;
    In Dig. Techn. Paper IEEE Symposium on VLSI Circuits (VLSI),
    IEEE, pp. 1‒2, June 2017. DOI: 10.23919/VLSIC.2017.8008555
    Abstract: ... This paper presents an area- and energy-efficient sensor readout circuit, which can precisely digitize temperature, capacitance and voltage. The three modes use only on-chip references and employ a shared zoom ADC based on SAR and ΔΣ conversion to save die area. Measurements on 24 samples from a single wafer show a temperature inaccuracy of ±0.2 °C (3σ) over the military temperature range (-55°C to 125°C). The voltage sensing shows an inaccuracy of ±0.5\%. The sensor also offers 18.7-ENOB capacitance-to-digital conversion, which handles up to 3.8 pF capacitance with a 0.76 pJ/conv.-step energy-efficiency FoM. It occupies 0.33 mm² in a 0.16 μm CMOS process and draws 4.6 μA current from a 1.8 V supply.

  13. A Compact Sensor Readout Circuit with Combined Temperature, Capacitance and Voltage Sensing Functionality
    B. Yousefzadeh; W. Wu; B. Buter; K. A. A. Makinwa; M. Pertijs;
    In Dig. Techn. Paper IEEE Symposium on VLSI Circuits (VLSI),
    IEEE, pp. 1‒2, June 2017. DOI: 10.23919/VLSIC.2017.8008555
    Abstract: ... This paper presents an area- and energy-efficient sensor readout circuit, which can precisely digitize temperature, capacitance and voltage. The three modes use only on-chip references and employ a shared zoom ADC based on SAR and ΔΣ conversion to save die area. Measurements on 24 samples from a single wafer show a temperature inaccuracy of ±0.2 °C (3σ) over the military temperature range (-55°C to 125°C). The voltage sensing shows an inaccuracy of ±0.5\%. The sensor also offers 18.7-ENOB capacitance-to-digital conversion, which handles up to 3.8 pF capacitance with a 0.76 pJ/conv.-step energy-efficiency FoM. It occupies 0.33 mm² in a 0.16 μm CMOS process and draws 4.6 μA current from a 1.8 V supply.

  14. A Broadband Polyvinylidene Difluoride-Based Hydrophone with Integrated Readout Circuit for Intravascular Photoacoustic Imaging
    V. Daeichin; C. Chen; Q. Ding; M. Wu; R. Beurskens; G. Springeling; E. Noothout; M. D. Verweij; K. W. A. van Dongen; J. G. Bosch; A. F. W. van der Steen; N. de Jong; M. Pertijs; G. van Soest;
    Ultrasound in Medicine \& Biology,
    Volume 42, Issue 5, pp. 1239‒1243, May 2016. DOI: 10.1016/j.ultrasmedbio.2015.12.016
    Abstract: ... Intravascular photoacoustic (IVPA) imaging can visualize the coronary atherosclerotic plaque composition on the basis of the optical absorption contrast. Most of the photoacoustic (PA) energy of human coronary plaque lipids was found to lie in the frequency band between 2 and 15 MHz requiring a very broadband transducer, especially if a combination with intravascular ultrasound is desired. We have developed a broadband polyvinylidene difluoride (PVDF) transducer (0.6 × 0.6 mm, 52 μm thick) with integrated electronics to match the low capacitance of such a small polyvinylidene difluoride element (<5 pF/mm2) with the high capacitive load of the long cable (∼100 pF/m). The new readout circuit provides an output voltage with a sensitivity of about 3.8 μV/Pa at 2.25 MHz. Its response is flat within 10 dB in the range 2 to 15 MHz. The root mean square (rms) output noise level is 259 μV over the entire bandwidth (1–20 MHz), resulting in a minimum detectable pressure of 30 Pa at 2.25 MHz.

  15. Increasing color saturation by optimizing light spectra constrained on color rendering properties
    H. Wu; J. Dong; GuoQi Zhang.;
    Journal of the Optical Society of America A,
    Volume 33, Issue 2, pp. 192-2014, 2016.

  16. A broadband PVDF-based hydrophone with integrated readout circuit for intravascular photoacoustic imaging
    V. Daeichin; C. Chen; Q. Ding; M. Wu; R. Beurskens; G. Springeling; E. Noothout; M. D. Verweij; K. W.A. van Dongen; J. G. Bosch; A. F. W. van der Steen; N. de Jong; M. Pertijs; G. van Soest;
    In Proc. SPIE Photonics West,
    SPIE, February 2016. DOI: 10.1016/j.ultrasmedbio.2015.12.016
    Abstract: ... Intravascular photoacoustic (IVPA) imaging can visualize the coronary atherosclerotic plaque composition on the basis of the optical absorption contrast. Most of the photoacoustic (PA) energy of human coronary plaque lipids was found to lie in the frequency band between 2 and 15 MHz requiring a very broadband transducer, especially if a combination with intravascular ultrasound is desired. We have developed a broadband polyvinylidene difluoride (PVDF) transducer (0.6 × 0.6 mm, 52 μm thick) with integrated electronics to match the low capacitance of such a small polyvinylidene difluoride element (<5 pF/mm2) with the high capacitive load of the long cable (∼100 pF/m). The new readout circuit provides an output voltage with a sensitivity of about 3.8 μV/Pa at 2.25 MHz. Its response is flat within 10 dB in the range 2 to 15 MHz. The root mean square (rms) output noise level is 259 μV over the entire bandwidth (1–20 MHz), resulting in a minimum detectable pressure of 30 Pa at 2.25 MHz.

  17. A 3.5-6.8GHz wide-bandwidth DTC-assisted fractional-N all-digital PLL with a MASH Sigma-Delta TDC for low in-band phase noise
    Y. Wu; M. Shahmohammadi; Y. Chen; P. Lu; R. B. Staszewski;
    In ESSCIRC Conference 2016: 42nd European Solid-State Circuits Conference,
    pp. 209-212, Sept 2016. DOI: 10.1109/ESSCIRC.2016.7598279
    Keywords: ... delta-sigma modulation;digital phase locked loops;integrated circuit noise;jitter;oscillators;phase noise;time-digital conversion;ADPLL;DTC-assisted fractional-N all-digital PLL;MASH ΔΣ TDC;digital-to-time converter;frequency 1.73 GHz to 3.38 GHz;frequency 3.5 GHz to 6.8 GHz;integrated jitter;low-in-band phase noise;power 10.7 mW;size 40 nm;wide-tuning range DCO;wide-tuning range digitally-controlled oscillator;Delays;Frequency measurement;Jitter;Multi-stage noise shaping;Phase locked loops;Phase noise;Tuning;All digital PLL;BBPD;DCO;DTC;MASH;TDC;noise shaping;wide-bandwidth;wide-tuning range.

  18. A 0.5ps 1.4mW 50MS/s Nyquist bandwidth time amplifier based two-step flash- #x0394; #x03A3; time-to-digital converter
    Y. Wu; R. B. Staszewski;
    In 2016 Second International Conference on Event-based Control, Communication, and Signal Processing (EBCCSP),
    pp. 1-4, June 2016. DOI: 10.1109/EBCCSP.2016.7605282
    Keywords: ... CMOS digital integrated circuits;amplifiers;delta-sigma modulation;nanoelectronics;time-digital conversion;CMOS;Nyquist bandwidth time amplifier;current 1.3 mA;integrated TDC error;power 1.4 mW;shaped quantization noise;size 40 nm;time 0.5 ps;two-step flash-ΔΣ time-to-digital converter;voltage 1.1 V;Adders;Bandwidth;Calibration;Delays;Multi-stage noise shaping;Quantization (signal);Time-domain analysis;MASH;Noise shaping;TDC;error feedback;time amplifier;time domain register;time-interleaved;two-step.

  19. Multi-sensor Read-out Circuit with Temperature, Capacitance and Voltage Sensing Functionalities
    Wei Wu;
    MSc thesis, Delft University of Technology, November 2016.
    document

  20. Fast-Settling Capacitive-Coupled Amplifiers
    J.H. Huijsing; Qinwen Fan; K.A.A. Makinwa; D. Fu; J. Wu; L. Zhou;
    Patent, 9,294,049, March 22 2016.

  21. Optimization of LED light spectrum to enhance colorfulness of illuminated objects with white light constraints
    H. Wu; J. Dong; G. Qi; GuoQi Zhang;
    Journal of the Optical Society of America A,
    Volume 32, Issue 7, pp. 1262-1270, 2015.

  22. A 103fsrms 1.32mW 50MS/s 1.25MHz bandwidth two-step flash- #x0394; #x03A3; time-to-digital converter for ADPLL
    Y. Wu; P. Lu; R. B. Staszewski;
    In 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 95-98, May 2015.

  23. Recoding of the stop codon UGA to glycine by a BD1-5/SN-2 bacterium and niche partitioning between Alpha- and Gammaproteobacteria in a tidal sediment microbial community naturally selected in a laboratory chemostat
    A. Hanke; E. Hamann; R. Sharma; J. Geelhoed; T. Hargesheimer; B. Kraft; V. Meyer; S. Lenk; H Osmers; R. Wu; K.A.A. Makinwa; RL Hettich; JF Banfield; HE Tegetmeyer; Marc Strous;
    Frontiers in Microbiology,
    Volume 5, Issue art. 231, pp. 1-17, 2014.

  24. A 56.4-to-63.4 GHz Multi-Rate All-Digital Fractional-N PLL for FMCW Radar Applications in 65 nm CMOS
    W. Wu; R. B. Staszewski; J. R. Long;
    IEEE Journal of Solid-State Circuits,
    Volume 49, Issue 5, pp. 1081-1096, May 2014.

  25. Design for test of a mm-Wave ADPLL-based transmitter
    W. Wu; R. B. Staszewski; J. R. Long;
    In Proceedings of the IEEE 2014 Custom Integrated Circuits Conference,
    pp. 1-8, Sept 2014.

  26. Adapting LED lighting to compensate the influence of ambient light on the light color
    J.D.H. Wu; GuoQi Zhang;
    In 11th China SSL conference,
    2014.

  27. High-Resolution Millimeter-Wave Digitally Controlled Oscillators With Reconfigurable Passive Resonators
    W. Wu; J. R. Long; R. B. Staszewski;
    IEEE Journal of Solid-State Circuits,
    Volume 48, Issue 11, pp. 2785-2794, Nov 2013.

  28. Precision Instrumentation Amplifiers and Read-Out Integrated Circuits
    R. Wu; J.H. Huijsing; K.A.A. Makinwa;
    Springer New York, in Analog Circuits and Sinal Processing, 2013. Published as e-book in 2012; printed version 2013.

  29. Efficient and MRI compatible voltage up-converter for fully implantable neurodevices
    Chi Wing Wu; Senad Hiseni; Wouter Serdijn;
    In Book of Abstracts, 4th Dutch Conference on Bio-Medical Engineering (BME),
    Egmond aan Zee, the Netherlands, Jan. 24-25 2013.

  30. A mm-Wave FMCW radar transmitter based on a multirate ADPLL
    W. Wu; X. Bai; R. B. Staszewski; J. R. Long;
    In 2013 IEEE Radio Frequency Integrated Circuits Symposium (RFIC),
    pp. 107-110, June 2013.

  31. A 56.4-to-63.4GHz spurious-free all-digital fractional-N PLL in 65nm CMOS
    W. Wu; X. Bai; R. B. Staszewski; J. R. Long;
    In 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers,
    pp. 352-353, Feb 2013.

  32. Millimeter-Wave Digitally-Assisted Frequency Synthesizer in CMOS
    W. Wu;
    PhD thesis, Delft University of Technology, 09 2013. Promotor: R.B. Staszewski and J.R. Long.

  33. Millimeter-Wave Digitally-Assisted Frequency Synthesizer in CMOS
    W. Wu;
    PhD thesis, Delft University of Technology, http://doi.org/10.4233/uuid:fffc705a-ed90-4228-bd12-b6daa8cc13a2, 09 2013. Promotor: R.B. Staszewski and J.R. Long.

  34. Stimulus generation for RF MEMS switches test application
    Mingxin Song; Jinghua Yin; Zuobao Cao; Tong Wu; Yu Zhao; Zhao Jin; A. Zjajo;
    International Journal of Simulation and Process Modeling,
    Volume 7, Issue 1, pp. 107-114, February 2012.
    document

  35. A 20-b ± 40-mV range read-out IC with 50-nV offset and 0.04% gain error for bridge transducers
    R. Wu; Y. Chae; J.H. Huijsing; K.A.A. Makinwa;
    IEEE Journal of Solid State Circuits,
    Volume 47, Issue 9, pp. 2152-2163, September 2012. Harvest.

  36. Passive Circuit Technologies for mm-Wave Wireless Systems on Silicon
    J. R. Long; Y. Zhao; W. Wu; M. Spirito; L. Vera; E. Gordon;
    IEEE Transactions on Circuits and Systems I: Regular Papers,
    Volume 59, Issue 8, pp. 1680-1693, Aug 2012.

  37. Linear variable optical filter-based ultraviolet microspectrometer
    Emadi, Arvin; Wu, Huaiwen; de Graaf, Ger; Enoksson, Peter; Correia, Jose Higino; Wolffenbuttel, Reinoud;
    Applied optics,
    Volume 51, Issue 19, pp. 4308-4315, 2012.

  38. Design and implementation of a sub-nm resolution microspectrometer based on a Linear-Variable Optical Filter
    Emadi, Arvin; Wu, Huaiwen; de Graaf, Ger; Wolffenbuttel, Reinoud;
    Optics Express,
    Volume 20, Issue 1, pp. 489-507, 2012.

  39. In-situ TEM on (de)hydrogenation and oxidation/reduction of Pd
    T. Yokosawa; M.Y. Wu; G. Pandraud; B. Dam; H.W. Zandbergen;
    In The 15th European Microscopy Congress (EMC 2012),
    Manchester, UK, pp. 1-2, Sept. 2012.

  40. A 20bit continuous-time ΣΔ modulator with a Gm-C integrator, 120dB CMRR and 15 ppm INL
    G. Singh; R. Wu; Y. Chae; K.A.A. Makinwa;
    In Y. Deval; J-B Begueret; D Belot (Ed.), Proceedings 2012 38th European Solid-State Circuit Conference,
    IEEE, pp. 385-388, 2012.

  41. High-resolution 60-GHz DCOs with reconfigurable distributed metal capacitors in passive resonators
    W. Wu; J. R. Long; R. B. Staszewski; J. J. Pekarik;
    In 2012 IEEE Radio Frequency Integrated Circuits Symposium,
    pp. 91-94, June 2012.

  42. Design, fabrication and measurements with a UV linear-variable optical filter microspectrometer
    Emadi, Arvin; Wu, Huaiwen; de Graaf, Ger; Enoksson, Peter; Correia, Jos{\'e} Higino; Wolffenbuttel, Reinoud;
    In Proceedings of SPIE Photonics Europe, vol. 8439,
    SPIE, pp. 84390V-84390V, 2012.

  43. Design and implementation of IR microspectrometers based on linear-variable optical filters
    Emadi, Arvin; Wu, Huaiwen; de Graaf, Ger; Wolffenbuttel, Reinoud;
    In Proceedings of SPIE Photonics Europe, vol. 8439,
    SPIE, pp. 84391O-84391O, 2012.

  44. Design, fabrication and measurements with a UV linear-variable optical filter microspectrometer
    Emadi, Arvin; Wu, Huaiwen; de Graaf, Ger; Enoksson, Peter; Correia, Jos{\'e} Higino; Wolffenbuttel, Reinoud;
    In Proceedings of SPIE Photonics Europe, vol. 8439,
    SPIE, pp. 84390V-84390V, 2012.

  45. Ripple reduction loop for chopper amplifiers and chopper-stabilized amplifiers
    J.H. Huijsing, K.A.A. Makinwa; R. Wu;
    Patent, US 8,120,422, February 2012.

  46. A surface micromachined thermopile detector array with an interference-based absorber
    H. Wu; A. Emadi; P.M. Sarro; G. de Graaf; R.F. Wolffenbuttel;
    Journal of Micromechanics and Microengineering,
    Volume 21, Issue 7, pp. 1-8, Jun. 2011. DOI 10.1088/0960-1317/21/7/074009.

  47. Excimer laser crystallization of InGaZnO4 on SiO2 substrate
    T. Chen; M.Y. Wu; R. Ishihara; K. Nomura; T. Kamiya; H. Hosono; C.I.M Beenakker;
    Journal of Materials Science: Materials Electronics,
    Volume 22, pp. 1694-1696, 2011. DOI 10.1007/s10854-011-0347-4.

  48. A surface micromachined thermopile detector array with an interference-based absorber
    H.W. Wu; A. Emadi; P.M. Sarro; G. de Graaf; R.F. Wolffenbuttel;
    Journal of Micromechanics and Microengineering,
    Volume 21, Issue 7, pp. 1-8, 2011.

  49. A current-feedback instrumentation amplifier with a gain error reduction loop and 0.06% untrimmed gain error
    R. Wu; J.H. Huijsing; K.A.A. Makinwa;
    IEEE Journal of Solid State Circuits,
    Volume 46, Issue 12, pp. 2794-2806, December 2011. NEO.

  50. Use of multi-wall carbon nanotubes as an absorber in a thermal detector
    H. Wu; S. Vollebregt; A. Emadi; G. de Graaf; R. R. IshiharaF. Wolffenbuttel;
    In C. Tsamis; G. Kaltas (Ed.), Proc. Eurosensors XXV,
    Athens, Greece, Procedia Engineering, pp. 523-526, Sep. 2011. DOI 10.1016/j.proeng.2011.12.130.

  51. Use of multi-wall carbon nanotubes as an absorber in a thermal detector
    H. Wu; S. Vollebregt; A. Emadi; G. de Graaf; R. Ishihara; R.F. Wolffenbuttel;
    In C Tsamis; G Kaltas (Ed.), 25th Eurosensors Conference,
    Elsevier, pp. 523-526, 2011.

  52. A model for static and dynamic thermal analysis of thin film MEMS structures including the thermal conductivity of the surrounding gas
    G. de Graaf; H.W. Wu; R.F. Wolffenbuttel;
    In {De Saint Leger et al}, O (Ed.), 12th Intl. Conf. on Thermal, Mechanical Multi-Physics Simulation and Experiments in Microelectronics and Microsystems,
    IEEE, pp. 1/5-5/5, 2011.

  53. IR microspectrometers based on linear-variable optical filters
    A. Emadi; H.W. Wu; G. de Graaf; R.F. Wolffenbuttel;
    In G Kaltsas; C Tsamis (Ed.), 25th Eurosensors Conference,
    Elsevier, pp. 1401-1404, 2011.

  54. Design and fabrication of an Albedo insensitive analog sun sensor
    H.W. Wu; A. Emadi; G. de Graaf; J. Leijtens; R.F. Wolffenbuttel;
    In G Kaltsas; C Tsamis (Ed.), 25th Eurosensors Conference,
    Elsevier, pp. 527-530, 2011.

  55. A 21-bit Read-Out IC Employing Dynamic Element Matching with 0.037% Gain Error
    R. Wu; J.H. Huijsing; K.A.A. Makinwa;
    In K-N Kim; S-I Liu (Ed.), 2011 IEEE Asian Solid-State Circuits Conference,
    IEEE, pp. 241-244, 2011.

  56. A Continuous-Time Sigma-Delta Modulator with a Gm-C Input Stage,120-dB CMRR and -87 dB THD
    Navid Sarhangnejad; R. Wu; Y. Chae; K.A.A. Makinwa;
    In K-N Kim; S-I Liu (Ed.), 2011 IEEE Asian Solid-State Circuits Conference (A-SSCC),
    IEEE, pp. 245-248, 2011.

  57. A 25mW Smart CMOS Sensor for Wind and Temperature Measurement
    J. Wu; C.P.L. van Vroonhoven; Y. Chae; K.A.A. Makinwa;
    In E Lewis; T Kenny (Ed.), Proceedings IEEE Sensors 2011,
    IEEE, pp. 1261-1264, 2011.

  58. A current-feedback instrumentation amplifier with a gain error reduction loop and 0.06% untrimmed gain error
    R. Wu; J.H. Huijsing; K.A.A. Makinwa;
    In A Chandrakasan; {Gass et al}, W (Ed.), Digest of Technical Papers - 2011 IEEE International Solid-State Circuits Conference,
    IEEE, pp. 244-246, February 2011.

  59. Circuit technologies for mm-wave wireless systems on silicon
    J. R. Long; Y. Zhao; Y. Jin; W. Wu; M. Spirito;
    In 2011 IEEE Custom Integrated Circuits Conference (CICC),
    pp. 1-8, Sept 2011.

  60. A 21b ±40mV range read-out IC for bridge transducers
    R. Wu; J.H. Huijsing; K.A.A. Makinwa;
    In A Chandrakasan; {Gass et al}, W (Ed.), Digest of Technical Papers - 2011 IEEE International Solid-State Circuits Conference,
    IEEE, pp. 110-111, February 2011. NEO.

  61. A 50mW CMOS wind sensor with ±4% speed and ±2° direction error
    J. Wu; Y. Chae; C.P.L. van Vroonhoven; K.A.A. Makinwa;
    In A Chandrakasan; {Gass et al}, W (Ed.), Digest of Technical Papers - 2011 IEEE International Solid-State Circuits Conference,
    IEEE, pp. 106-108, February 2011.

  62. MEMS-based lineair thermopile detector arrays for ir microspectrometers
    H.W. Wu;
    PhD thesis, Delft University of Technology, 2011.

  63. Precision instrumentation amplifiers and a read-out for sensor interfacing
    R. Wu;
    PhD thesis, Delft University of Technology, 2011.

  64. Growth of high density aligned carbon nanotubes using palladium as catalyst
    S. Vollebregt; J. Derakhshandeh; R. Ishihara; M. Y. Wu; C. I. M. Beenakker;
    Journal of Electronic Materials,
    Volume 39, Issue 4, pp. 371-375, 2010.

  65. Fabrication and characterization of IC compatible linear variable optical filters with application in a micro spectrometer
    A. Emadi; H.W. Wu; S. Grabarnik; G. de Graaf; K. Hedsten; P. Enoksson; J.H.G. Correia; R.F. Wolffenbuttel;
    Sensors and Actuators A: Physical: an international journal devoted to research and development of physical and chemical transducers,
    Volume 162, Issue 2, pp. 400-405, 2010.

  66. Surface micromached gas sensor using thermopiles for carbon dioxide detection
    S. Chen; H.W. Wu; G. de Graaf; R.F. Wolffenbuttel;
    {van Honschoten}, J; H Verputten; H Groenland (Ed.);
    MME, , pp. 216-219, 2010.

  67. Spectral measurement using IC compatible linear variable optical filter
    A. Emadi; H. Wu; S. Grabarnik; G. de Graaf; K. Hedsten; P. Enoksson; J.H.G. Correia; R.F. Wolffenbuttel;
    H Thienpont; {van Daele}, P; J Mohr; H Zappe (Ed.);
    SPIE, , pp. 1-6, 2010.

  68. Thermal analysis, fabrication and signal processing of surface microma-chined thermal conductivity based gas sensors
    G. de Graaf; H. Wu; R.F. Wolffenbuttel;
    L Abelmann; H Groenland; {van Honschoten}, J; H Verputten (Ed.);
    MME, , pp. 173-176, 2010.

  69. An UV linear variable optical filter based micro spectrometer
    A. Emadi; H. Wu; S. Grabarnik; G. de Graaf; K. Hedsten; P. Enoksson; J.H.G. Correia; R.F. Wolffenbuttel;
    M.J. Vellekoop (Ed.);
    Eurosensor 24, , pp. 416-419, 2010.

  70. A CMOS 128 APS linear array integrated with a LVOF for high sensitivity and high resolution micro spectrophotometry
    C. Liu; A. Emadi; H.W. Wu; G. de Graaf; R.F. Wolffenbuttel;
    F Berghmans; AG Mignani; C. van HoofA (Ed.);
    SPIE, , pp. 1-10, 2010.

  71. Encapsulated thermopile detector array for IR microspectrometer
    H. Wu; A. Emadi; G. de Graaf; R.F. Wolffenbuttel;
    MA Druy; CD Brown; RA Crocombe (Ed.);
    SPIE, , pp. 1-9, 2010.

  72. CMOS compatible LVOF based visible microspectrometer
    A. Emadi; H. Wu; S. Grabarnik; G. de Graaf; R.F. Wolffenbuttel;
    MA Druy; CD Brown; RA Crocombe (Ed.);
    SPIE, , pp. 1-8, 2010.

  73. Spectral measurement with a linear variable filter using a LMS algorithm
    A. Emadi; S. Grabarnik; H. Wu; G. de Graaf; R.F. Wolffenbuttel;
    MJ vellekoop (Ed.);
    Eurosensor 24, , pp. 504-507, 2010.

  74. Post processing of linear variable optical filter on CMOS chip at die-level
    A. Emadi; H. Wu; G. de Graaf; R.F. Wolffenbuttel;
    {van Honschoten}, J; H Verputten; H Groenland (Ed.);
    MME, , pp. 185-188, 2010.

  75. Thin film encapsulated 1D thermoelectric detector in an IR microspectrometer
    H. Wu; A. Emadi; G. de Graaf; R.F. Wolffenbuttel;
    F Berghmans; AG Mignani; C. van HoofA (Ed.);
    SPIE, , pp. 1-8, 2010.

  76. Interference filter based absorber for thermopile detector array by surface micromachining
    H. Wu; A. Emadi; G. de Graaf; R.F. Wolffenbuttel;
    L Abelmann; H Groenland; {van Honschoten}, J; H Verputten (Ed.);
    MME, , pp. 169-172, 2010.

  77. Linear variable optical filter with silver metallic layers
    A. Emadi; S. Mokkapati; H. Wu; G. de Graaf; R.F. Wolffenbuttel;
    {van Honschoten}, J; H Verputten; H Groenland (Ed.);
    MME, , pp. 104-107, 2010.

  78. Characterization of thermal cross-talk in a MEMS-based thermopile detector array
    H.W. Wu; S. Grabarnik; A. Emadi; G. de Graaf; R.F. Wolffenbuttel;
    Journal of Micromechanics and Microengineering,
    Volume 19, pp. 74022(1)-74022, 2009.

  79. A chopper current-feedback instrumentation amplifier with a 1mHz 1/f noise corner and an AC-coupled ripple reduction loop
    R. Wu; K.A.A. Makinwa; J.H. Huijsing;
    IEEE Journal of Solid State Circuits,
    Volume 44, pp. 3232-3243, 2009.

  80. Vertically tapered layers for optical applications fabricated using resist reflow
    A. Emadi; H.W. Wu; S. Grabarnik; G. de Graaf; R.F. Wolffenbuttel;
    Journal of Micromechanics and Microengineering,
    Volume 19, pp. 074014(1)-0740, 2009.

  81. Self-powered sun sensor microsystems
    H.W. Wu; A. Emadi; G. de Graaf; J. Leijtens; R.F. Wolffenbuttel;
    s.n. (Ed.);
    Eurosensors, , pp. 1-4, 2009.

  82. Microspectrometer with a concave grating fabricated in a MEMS technology
    S. Grabarnik; A. Emadi; H.W. Wu; G. de Graaf; R.F. Wolffenbuttel;
    s.n. (Ed.);
    Eurosensors, , pp. 1-4, 2009.

  83. IC-compatible fabrication of linear variable optical filters for micro-spectrometer
    A. Emadi; H.W. Wu; S. Grabarnik; G. de Graaf; R.F. Wolffenbuttel;
    s.n. (Ed.);
    Eurosensors, , pp. 1-4, 2009.

  84. Study of thermal cross-talk in micromachined thermopile based infrared detector arrays
    H.W. Wu; S. Grabarnik; A. Emadi; G. de Graaf; R.F. Wolffenbuttel;
    s.n. (Ed.);
    STW, , pp. 1-4, 2009.

  85. Self-powered optical sensor systems
    H.W. Wu; A. Emadi; G. de Graaf; J. Leijtens; R.F. Wolffenbuttel;
    s.n. (Ed.);
    Transducers, , pp. 1373-1376, 2009.

  86. Interference filter based IR absorber for MEMS thermopile array
    A. Emadi; H.W. Wu; S. Grabarnik; G. de Graaf; R.F. Wolffenbuttel;
    s.n. (Ed.);
    MME, , pp. 1-4, 2009.

  87. Thermal cross-talk in IC-compatible micromachined infrared thermopile detector arrays
    H.W. Wu; S. Grabarnik; G. de Graaf; A. Emadi; R.F. Wolffenbuttel;
    s.n. (Ed.);
    IRS, , pp. 319-323, 2009.

  88. Investigating Low Temperature High Density Aligned Carbon Nanotube and Nanofilament Growth using Palladium as Catalyst
    S. Vollebregt; J. Derakhshandeh; M.Y. Wu; R. Ishihara; C.I.M. Beenakker;
    In SAFE 2009,
    STW, pp. 125-128, 2009.

  89. Expitaxially grown (111) oriented Si film on a crystalline InGaO3(ZnO)5 substrate
    T. Chen; M.Y. Wu; T. Kamiya; H. Hosono; C.I.M. Beenakker;
    In AMFPD 09,
    pp. 67-68, 2009.
    document

  90. Location and Crystallographic Orientation Control of Si Grains Through Combined Metal Induced Lateral Crystallization and micro-Czochralski process
    Chen Tao; Ryoichi Ishihara; J. W .Metselaar; C.I.M Beenakker; Meng-Yue Wu;
    JJAP,
    Volume 47, Issue 3, pp. 1880-1883, 2008.

  91. Fabrication of an imaging diffraction grating for use in a MEMS-based optical microspectrograph
    S. Grabarnik; A. Emadi; H.W. Wu; G. de Graaf; G.V. Vdovin; R.F. Wolffenbuttel;
    Journal of Micromechanics and Microengineering,
    Volume 18, Issue 6, 2008.

  92. High-resolution microspectrometer with an aberration-correcting planar grating
    S. Grabarnik; A. Emadi; H.W. Wu; G. de Graaf; R.F. Wolffenbuttel;
    Applied Optics,
    Volume 47, pp. 6442-6447, 2008.

  93. A thermopile detector array with scaled TE elements for use in an integrated IR microspectrometer
    H.W. Wu; S. Grabarnik; A. Emadi; G. de Graaf; R.F. Wolffenbuttel;
    Journal of Micromechanics and Microengineering,
    Volume 18, Issue 6, 2008.

  94. Planar MEMS-compatible microspectrograph
    S. Grabarnik; A. Emadi; H.W. Wu; G. de Graaf; G.V. Vdovin; R.F. Wolffenbuttel;
    s.n. (Ed.);
    apcot, , pp. 53-56, 2008.

  95. Design and fabrication of a thermopile detector array with scaled elements for an integrated IR microspectrometer
    H.W. Wu; A. Emadi; W. van der Vlist; S. Grabarnik; G. de Graaf; R.F. Wolffenbuttel;
    s.n. (Ed.);
    apcot, , pp. 213-216, 2008.

  96. Optical microspectrometer with planar grating and external spherical
    S. Grabarnik; A. Emadi; H.W. Wu; G. de Graaf; R.F. Wolffenbuttel;
    s.n. (Ed.);
    Eurosensors, , pp. 350-353, 2008.

  97. Fabrication of trapped optical structures using resist reflow
    A. Emadi; H.W. Wu; S. Grabarnik; G. de Graaf; R.F. Wolffenbuttel;
    s.n. (Ed.);
    MME, , pp. 113-116, 2008.

  98. IC-compatible microspectrometer using a planar imaging diffraction grating
    S. Grabarnik; A. Emadi; H.W. Wu; G. de Graaf; G.V. Vdovin; R.F. Wolffenbuttel;
    s.n. (Ed.);
    SPIE, , pp. 1-10, 2008.

  99. Characterization of thermal cross-talk in a thermopile detector
    H.W. Wu; S. Grabarnik; G. de Graaf; A. Emadi; R.F. Wolffenbuttel;
    s.n. (Ed.);
    MME, , pp. 415-418, 2008.

  100. Simulation and analytical calculation of reflowed resist structures
    A. Emadi; H.W. Wu; S. Grabarnik; G. de Graaf; R.F. Wolffenbuttel;
    s.n. (Ed.);
    MME, , pp. 347-350, 2008.

  101. Cross-talk characterization of thermal detector array
    H.W. Wu; S. Grabarnik; A. Emadi; G. de Graaf; R.F. Wolffenbuttel;
    s.n. (Ed.);
    Eurosensors, , pp. 366-369, 2008.

  102. Concave diffraction gratings fabricated with planar lithography
    S. Grabarnik; A. Emadi; H.W. Wu; G. de Graaf; R.F. Wolffenbuttel;
    s.n. (Ed.);
    SPIE, , pp. 1-8, 2008.

  103. The design of a chopped current-feedback instrumentation amplifier
    R. Wu; K.A.A. Makinwa; J.H. Huijsing;
    In s.n. (Ed.), ISCAS 2008, IEEE International Symposium,
    ISCAS, pp. 2466-2469, 2008.

  104. A low power chopper current-feedback instrumentation amplifier with noise PSD of 17nV/Hz
    R. Wu; K.A.A. Makinwa; J.H. Huijsing;
    In s.n. (Ed.), ProRISC, pp. 279-282, 2008.

  105. Infrared thermopile detector array for the integrated micro spectrometer
    A. Emadi; H.W. Wu; S. Grabarnik; G. de Graaf; R.F. Wolffenbuttel;
    s.n. (Ed.);
    IEEE, , pp. 435-438, 2007.

  106. High-Precision Read-Out Circuit for Thermistor Temperature Sensor
    R. Wu; K.A.A. Makinwa; J.H. Huijsing; S. Nihtianov;
    , pp. -, 2007.

  107. Spectral sensor basedon an imaging diffraction grating and fabricated with MEMS technologies
    S. Grabarnik; A. Emadi; H.W. Wu; G. de Graaf; G.V. Vdovin; R.F. Wolffenbuttel;
    s.n. (Ed.);
    MME, , pp. 175-178, 2007.

  108. Design and fabrication of thermopile detector array for microspectrometer application
    H.W. Wu; A. Emadi; G. de Graaf; S. Grabarnik; R.F. Wolffenbuttel;
    s.n. (Ed.);
    MME, , pp. 103-106, 2007.

  109. Fabrication and characterization of infra-red multi-layered interference filter
    A. Emadi; S. Grabarnik; H.W. Wu; G. de Graaf; R.F. Wolffenbuttel;
    MME, , pp. 249-252, 2007.

  110. A fifth-order continuous-time sigma-delta modulator with 62-dB dynamic range and 2 MHz bandwidth
    R. Wu; J.R. Long; M. van de Gevel; Gerard Lassche;
    In s.n. (Ed.), A fifth-order continuous-time sigma-delta modulator with 62-dB dynamic range and 2 MHz bandwidth,
    ProRISC, pp. 100-103, 2007.

  111. A Fifth-order Continuous-time Sigma-delta Modulator with 62-dB Dynamic Range and 2 MHz Bandwidth
    R. Wu; J.R. Long; M. van de Gevel; Gerard Lassche;
    In s.n. (Ed.), Proceedings of the 2007 PH.D Research in Microelectronics and Electronics Conference, Prime 2007,
    IEEE, pp. 1-4, 2007.

  112. A New Extraction Technique for the Series Resistances of Semiconductor Devices Based on the Intrinsic Properties of Bias-Dependent Y-Parameters
    V. Cuoco; W.C.E. Neo; L.C.N de Vreede; H.C de Graaff; L.K. Nanver; H.C. Wu; H.F.F Jos; J.N. Burghartz;
    In Proc. Bipolar/BiCMOS Circuits and Technology Meeting 2004 (BCTM 2004),
    Montreal, Canada, pp. 148-151, Sep. 2004.

  113. A new extraction technique for the series resistances of semiconductor devices based on the intrinsic properties of bias-dependent y-parameters [bipolar transistor examples]
    Cuoco, V.; Neo, W.C.E.; de Vreede, L.C.N.; de Graaff, H.C.; Nanver, L.K.; Buisman, K.; Wu, H.C.; Jos, H.F.F.; Burghartz, J.N.;
    In Bipolar/BiCMOS Circuits and Technology, 2004. Proceedings of the 2004 Meeting,
    pp. 148-151, 2004. DOI: 10.1109/BIPOL.2004.1365766

  114. Extended Mextram Model To Wide Frequency Range
    H.-C. Wu; S. Mijalkovic; J.N. Burghartz;
    In Proc. SAFE 2003,
    Veldhoven, The Netherlands, pp. 668-671, Nov. 2003. ISBN 90-73461-39-1.
    document

  115. Mixed Compact and Behavior Modeling Using AHDL Verilog-A
    H.-C. Wu; S. Mijalkovic; J.G. Macias; J.N. Burghartz;
    In 2003 IEEE International Workshop on Behavioral Modeling and Simulation (BMAS 2003),
    San Jose, CA, USA, pp. 139-143, Oct. 2003.

  116. Investigation of periodicity fluctuations in strained (GaNAs)1/(GaAs)m superlattices by the kinematical simulation of X-ray diffraction
    Z. Pan; Y.T. Wang; Y. ZY. Huang. W. Lin; Z.Q. Zhou; L.H. R. LiH. Wu; Q.M. Wang;
    Applied Physics Letter,
    Volume 75, Issue 2, pp. 223, 1999.

  117. Structural and photoelectric studies on double barrier quantum well IR detectors
    D.S. Jiang; L.Q. Cui; W.G. Wu; C.Y. Song; Y. ZY. Huang. ZY. Huang.T. Wang; R.Z. Wang;
    In Proceedings of the Eighth International Conference on Narrow Gap Semiconductors, World Scientific,
    Singapore, pp. 172, 1998.

  118. Structural and photoelectric studies on double barrier quantum well infrared detectors
    W.G. Wu; D.S. Jiang; L.Q. Cui; C.Y. Song; Y. Zhuang;
    In 1997 IEEE Hong Kong Electron Devices Meeting,
    1997.

  119. Study of double barrier superlattice by synchrotron radiation and double-crystal x-ray diffraction
    Y. ZY. Huang.T. Wang; D.S. Jiang; Y.P. Yang; X.M. Jiang; J.Y. Wu; L.S. Xiu; W.L. Zheng;
    Appl. Phys. Lett.,
    Volume 68, Issue 8, pp. 1147, 1996.

BibTeX support

Last updated: 1 Sep 2023

Yizhuo Wu