MSc X. Yue

PhD student
Electronic Instrumentation (EI), Department of Microelectronics

PhD thesis (Sep 2025): Energy-Efficient Integrated Circuits for Piezoelectric Energy Harvesting
Promotor: Kofi Makinwa, Sijun Du

Expertise: Pizeoelectric energy harvesting

Biography

Xinling Yue was born in Shandong, China in 1995. She received her M.Sc. degree from University of Electronic Science and Technology of China, in 2020. She is currently working towards the Ph.D. degree in the Electronic Instrumentation Laboratory of the Department of Microelectronics, Delft University of Technology. Her current research interests include energy-efficient integrated circuit and system designs for kinetic energy harvesting and wireless power transfer.

Publications

  1. A Fully Integrated Sequential Synchronized Switch Harvesting on Capacitors Rectifier Based on Split-Electrode for Piezoelectric Energy Harvesting
    Xinling Yue; Jiarui Mo; Zhiyuan Chen; Sten Vollebregt; Guoqi Zhang; Sijun Du;
    IEEE Transactions on Power Electronics,
    Volume 39, Issue 6, pp. 7643-7653, 2024. DOI: 10.1109/TPEL.2024.3369728

  2. CO2-induced switching between MOF-based bio-mimic slow anion channel and proton pump for medical exhalation detection
    Honghao Chen; Xiaorui Yue; Yifei Fan; Bin Zheng; Sitao Lv; Fengnan Wang; Yixun Gao; Hao Li; Yi-Kuen Lee; Patrick J. French; Ahmad M. Umar Siddiqui; Yao Wang; Guofu Zhou;
    Chemical Engineering Journal,
    Volume 493, pp. 152633, 2024. DOI: https://doi-org.tudelft.idm.oclc.org/10.1016/j.cej.2024.1526

  3. A Bias-Flip Rectifier With Duty-Cycle-Based MPPT for Piezoelectric Energy Harvesting
    Yue, Xinling; Javvaji, Sundeep; Tang, Zhong; Makinwa, Kofi A. A.; Du, Sijun;
    IEEE Journal of Solid-State Circuits,
    Volume 59, Issue 6, pp. 1771-1781, 2024. DOI: 10.1109/JSSC.2023.3313733
    Keywords: ... Rectifiers;Maximum power point trackers;Power generation;Vibrations;Voltage measurement;Energy harvesting;Capacitors;Bias-flip rectifier;duty-cycle-based (DCB);energy harvesting;maximum power point tracking (MPPT);piezoelectric energy harvester;synchronized switch harvesting on inductor (SSHI).

  4. Performance Optimization of SSHC Rectifiers for Piezoelectric Energy Harvesting
    Yue, X.; Du, S.;
    IEEE Transactions on Circuits and Systems II: Express Briefs,
    Volume 70, Issue 4, pp. 1560-1564, 2023. DOI: 10.1109/TCSII.2022.3224033

  5. A bio-inspired and switchable H+/OH− ion-channel for room temperature exhaled CO2 chemiresistive sensing
    Honghao Chen; Ruofei Lu; Yixun Gao; Xiaorui Yue; Haihong Yang; Hao Li; Yi-Kuen Lee; Paddy J. French; Yao Wang; Guofu Zhouab;
    Journal of Materials Chemistry A,
    Volume 11, Issue 21959-21971, 2023. DOI: https://doi.org/10.1039/D3TA04685K
    Abstract: ... Inspired by the CO2-induced reversible activation mechanism of the slow anion channel 1 (SLAC1) in plant stomatal guard cells during plant photosynthesis, we designed and prepared a CO2- switchable H+/OH− ion channel (CSPH ion channel). A high-performance chemiresistive room temperature CO2 sensor has been prepared based on this CSPH ion channel. The obtained CO2 room temperature sensor γ-CD-MOF@RhB exhibits high sensitivity (Rg/R0 = 1.50, 100 ppm), excellent selectivity, good stability (less than 5% reduction in 30 days response value), and 99.96% consistency with commercial infrared CO2 meter. The practical limit of detection (pLOD) of the γ-CD-MOF@RhB sensor reaches 10 ppm at room temperature toward CO2, which is the lowest for reported MOF-derived chemiresistive room temperature CO2 sensors so far. Ion conduction mechanism studies have shown that the CSPH ion channel behaves as a CO2-switchable H+/OH− ion channel with a switching point of approximately 60 000 ppm CO2. As an application attempt, the fabricated low pLOD CO2 sensor has been used for human exhaled CO2 detection to compare CO2 concentration in the breath of individuals before and after exercise and COVID-19. It was also logically indicated that the average concentration of human exhaled CO2 after COVID-19 recovery is different for undiseased subjects.

  6. A Bias-Flip Rectifier With Duty-Cycle-Based MPPT for Piezoelectric Energy Harvesting
    Yue, Xinling; Javvaji, Sundeep; Tang, Zhong; Makinwa, Kofi A. A.; Du, Sijun;
    IEEE Journal of Solid-State Circuits,
    pp. 1-11, 2023. DOI: 10.1109/JSSC.2023.3313733

  7. A Bias-Flip Rectifier With Duty-Cycle-Based MPPT for Piezoelectric Energy Harvesting
    Yue, X.; Javvaji, S.; Tang, Z.; Makinwa, K. A. A.; Du, S.;
    IEEE Journal of Solid-State Circuits,
    pp. 1-11, 2023. DOI: 10.1109/JSSC.2023.3313733

  8. A Synchronized Switch Harvesting Rectifier With Reusable Storage Capacitors for Piezoelectric Energy Harvesting
    Yue, X.; Du, S.;
    IEEE Journal of Solid-State Circuits,
    Volume 58, Issue 9, pp. 2597-2606, 2023. DOI: 10.1109/JSSC.2023.3260145

  9. 30.3 A Bias-Flip Rectifier with a Duty-Cycle-Based MPPT Algorithm for Piezoelectric Energy Harvesting with 98% Peak MPPT Efficiency and 738% Energy-Extraction Enhancement
    Yue, X.; Javvaji, S.; Tang, Z.; Makinwa, K. A. A.; Du, S.;
    In 2023 IEEE International Solid- State Circuits Conference (ISSCC),
    pp. 442-444, 2023. DOI: 10.1109/ISSCC42615.2023.10067284

  10. A Bias-Flip Rectifier with a Duty-Cycle-Based MPPT Algorithm for Piezoelectric Energy Harvesting with 98% Peak MPPT Efficiency and 738% Energy-Extraction Enhancement
    Yue, X.; Javvaji, S.; Tang, Z.; Makinwa, K. A. A.; Du, S.;
    In 2023 IEEE International Solid- State Circuits Conference (ISSCC),
    pp. 442-444, 2023. DOI: 10.1109/ISSCC42615.2023.10067284

  11. A Nanopower 95.6% Efficiency Voltage Regulator with Adaptive Supply-Switching for Energy Harvesting Applications
    Zou, Y.; Yue, X.; Du, S.;
    In 2022 IEEE International Symposium on Circuits and Systems (ISCAS),
    pp. 3557-3561, 2022. DOI: 10.1109/ISCAS48785.2022.9937775

  12. A Reconfigurable Cold-Startup SSHI Rectifier with 4X Lower Input Amplitude Requirement for Piezoelectric Energy Harvesting
    Yue, X.; Zou, Y.; Chen, Z.; Liang, J.; Du, S.;
    In 2022 IEEE International Symposium on Circuits and Systems (ISCAS),
    pp. 649-653, 2022. DOI: 10.1109/ISCAS48785.2022.9937838

  13. A Highly Efficient Fully Integrated Active Rectifier for Ultrasonic Wireless Power Transfer
    Yue, X.; Chen, Z.; Zou, Y.; Du, S.;
    In 2022 IEEE International Symposium on Circuits and Systems (ISCAS),
    pp. 531-535, 2022. DOI: 10.1109/ISCAS48785.2022.9937532

  14. A 2-Mode Reconfigurable SSHI Rectifier with 3.2X Lower Cold-Start Requirement for Piezoelectric Energy Harvesting*
    Yue, X.; Du, S.;
    In 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS),
    pp. 1-4, 2022. DOI: 10.1109/ICECS202256217.2022.9970776

  15. Voltage Flip Efficiency Optimization of SSHC Rectifiers for Piezoelectric Energy Harvesting
    Yue, X.; Du, S.;
    In 2021 IEEE International Symposium on Circuits and Systems (ISCAS),
    pp. 1-5, 2021. DOI: 10.1109/ISCAS51556.2021.9401330

  16. Monitoring of meniscus motion at nozzle orifice with capacitive sensor for inkjet applications
    J. Wei; C. Yue; GuoQi Zhang; J.F. Dijksman; P.M. Sarro;
    In Proc. 11th IEEE Sensors Conference,
    Taipei, Taiwan, pp. 2172-2175, Oct 2012.

  17. Interference management in wireless communication systems: Theory and applications
    Yan Xin; Xiaodong Wang; G. Leus; Guosen Yue; Jinhua Jiang;
    EURASIP J. on Wireless Communications and Networking,
    2010. Article ID 687649.

  18. Design, fabrication and characterization of a femto-farad capacitive sensor for pico-liter liquid monitoring
    J. Wei; C. Yue; M. van der Velden; Z.L. Chen; Z.W. Liu; K.A.A. Makinwa; P.M. Sarro;
    Sensors and Actuators A,
    Volume 162, Issue 2, pp. 406-417, 2010.

  19. A silicon MEMS structure for characterization of femto-farad-level capacitive sensors with lock-in architecture
    J. Wei; C. Yue; Z.L. Chen; Z.W. Liu; P.M. Sarro;
    Journal of Micromechanics and Microengineering,
    Volume 20, Issue 6, 2010.

  20. Design, fabrication and characterization of a femto-farad capacitive sensor for pico-liter liquid monitoring
    J. Wei; C. Yue; M. van der Velden; T. Chen; Z.W. Liu; K.A.A. Makinwa; P.M. Sarro;
    Sensors and Actuators A: Physical: an international journal devoted to research and development of physical and chemical transducers,
    Volume 162, Issue 2, pp. 406-417, 2010.

  21. In-pixel buried-channel source follower in CMOS image sensors exposed to X-ray radiation
    C. Yue; J. Tan; X. Wang; A. Mierop; A.J.P. Theuwissen;
    In s.n. (Ed.), Proceedings of IEEE sensors 2010,
    IEEE, pp. 1649-1652, 2010.

  22. A CMOS image sensor with in pixel buried channel source follower and optimized row selector
    C. Yue; X. Wang; A. Mierop; A.J.P. Theuwissen;
    pp. 2390-2397, 2009.

  23. Characterization of Femto-Farad-Level Capacitive MEMS Sensors using Lock-in Architecture
    C. Yue; J. Wei; Z.L. Chen; Z.W. Liu; P.M. Sarro;
    In P. Pons (Ed.), Proceedings of 20th Micromechanics Europe Workshop (MME),
    Toulouse, France, LAAS-CNRS, pp. 1-4, 2009.

  24. Implementation and Characterization of a femto-Farad Capacitive Sensor for pico-Liter Liquid Monitoring.
    J. Wei; C. Yue; Z.L. Chen; Z.W. Liu; K.A.A. Makinwa; P.M. Sarro;
    In J. Brugger; D. Briand (Ed.), Eurosensors XXIII,
    Lausanne, Switzerland, Elsevier, pp. 120-123), 2009.
    document

  25. Implementation and Characterization of a femto-Farad Capacitive Sensor for pico-Liter Liquid Monitoring
    J. Wei; C. Yue; ZL. Chen; Z.W. Liu; K.A.A. Makinwa; P.M. Sarro;
    In J Brugger; D Briand (Ed.), Proceeding of EUROSENSORS XXIII,
    Elsevier, pp. 120-123, 2009.

  26. Receiver RF front-end with 5GHz-band LC voltage-controlled oscillator and subharmonically-locked ring oscillator for 17GHz wireless applications
    Tasic, A.; Yue, S.S.Y.; Ma, D.K.L.; Serdijn, W.A.; Long, J.R.; Harame, D.L;
    In Proc. Radio Frequency Integrated Circuits Symposium (RFIC),
    IEEE, June 11-13 2006.
    document

BibTeX support

Last updated: 17 Sep 2025