dr. T. Costa

Assistant Professor
Bioelectronics (BE), Department of Microelectronics

Expertise: Analog and mixed-signal circuit design, Microfabrication, Microsystem Integration, Focused ultrasound neuromodulation, Neuroelectronics, Brain stimulation.

Themes: Health and Wellbeing

Biography

Tiago Costa (S’10-M’15) was born in Torres Vedras, Portugal, in 1985. He received the B.Sc. and M.Sc. in electronic engineering from Instituto Superior Técnico - University of Lisbon, Portugal, in 2006 and 2008, respectively, and the Ph.D. (cum laude) in electrical and computer engineering from the same university, in 2014. His PhD research was developed in the signal processing group at INESC-ID, Lisbon, Portugal. In 2015 he joined the Bioelectronic Systems Laboratory at Columbia University, USA, as a postdoctoral research scientist. Since October 2019, he has been an assistant professor in the Bioelectronics section at the Delft University of Technology, The Netherlands.

His research group addressed the demanding challenges of ultrasound neuromodulation. The emerging field of ultrasound neuromodulation is pushing the boundaries in the broad ultrasound research field regarding focal precision, miniaturization, and power efficiency. By exploring his multi-disciplinary expertise in analog and mixed-signal circuit design, microfabrication, and microsystem integration, he is developing the next generation of ultrasound neuromodulation devices for in vitro mechanism studies, in vivo preclinical research, and clinical translation.

EE4555 Active implantable biomedical microsystems

Cardiac pacemakers, cochlear implants, neuroprostheses, brain–computer interfaces, deep organ pressure sensors, precise drug delivery units, bioelectronic medicine and electroceuticals

ET4127 Themes in biomedical electronics

BioMEMS, biosensors, bioelectronics, ultrasound, microfluidics, wavefield imaging in monitoring, diagnosis and treatment

ET4130 Bioelectricity

Bioelectric phenomena, their sources and their mathematical analysis. Applications to neurostimulation and neuroprosthetic.

ET4369 Nyquist-rate data converters

Architectures for Nyquist-rate ADCs

TM12003 Electrostimulation of Neurophysiological systems

Education history

EE1C31 Amplifiers and instrumentation

(not running) This course introduces the basics of electronic circuits for processing and amplification of information-carrying signals, and the basics of electronic instrumentation.

Projects history

A Brain-on-Chip Platform for Focused Ultrasonic Stimulation

We intend to develop an innovative brain-on-chip platform to decode the mechanisms underlying ultrasonic neu-romodulation.

  1. PMUT and CMUT Devices for Biomedical Applications: A Review
    Elisabetta Moisello; Lara Novaresi; Eshani Sarkar; Piero Malcovati; Tiago L. Costa; Edoardo Bonizzoni;
    IEEE Access,
    2024. DOI: 10.1109/ACCESS.2024.3359906

  2. An Acoustically Transparent Electrical Cap for Piezoelectric Ultrasound Transducers on Silicon
    Gandhika Wardhana; Tiago L. Costa; Massimo Mastrangeli;
    Proceedings,
    Volume 97, Issue 1, pp. 50, 2024. DOI: https://doi.org/10.3390/proceedings2024097050

  3. Feasibility Study for a High-Frequency Flexible Ultrasonic Cuff for High-Precision Vagus Nerve Ultrasound Neuromodulation
    Cornelis van Damme; Gandhika K. Wardhana; Andrada Iulia Velea; Vasiliki Giagka; Tiago L. Costa;
    IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
    2024. DOI: 10.1109/TUFFC.2024.3381923
    document

  4. Ultrasound phased array patch on flexible CMOS and methods for fabricating thereof
    Kenneth Shepard; Tiago Costa; Kevin Tien; Chen Shi;
    Patent, US11937981B2, 2024.
    document

  5. A 2D Ultrasound Phased-Array Transmitter ASIC for High-Frequency US Stimulation and Powering
    Hassan Rivandi; Tiago L. Costa;
    IEEE Transactions on Biomedical Circuits and Systems (IEEE TbioCAS),
    2023. DOI: 10.1109/TBCAS.2023.3288891

  6. Hybrid neuroelectronics: towards a solution-centric way of thinking about complex problems in neurostimulation tools
    Sofia Drakopoulou; Francesc Varkevisser; Linta Sohail; Masoumeh Aqamolaei; Tiago L. Costa; George D. Spyropoulos;
    Frontiers in Electronics,
    2023. DOI: https://doi.org/10.3389/felec.2023.1250655

  7. Low-cost shaping of electrical stimulation waveforms for bioelectronic medicine with improved efficiency and selectivity
    Amin Rashidi; Francesc Varkevisser; Vasiliki Giagka; Tiago L. Costa; Wouter A. Serdijn;
    In in Proc. 9th Dutch Biomedical Engineering Conf. (BME) 2023,
    January 2023.
    document

  8. An acoustically-transparent electrical cap for piezoelectric ultrasound transducers on silicon
    G. Wardhana; T. Costa; M. Mastrangeli;
    In XXXV Eurosensors Conference,
    10-13 September 2023.

  9. Multichannel Current-Mode Stimulator with Channel-Specific Regulated Power Supply
    Francesc Varkevisser; Tiago L. Costa; Wouter A. Serdijn;
    In Proc. 2023 IEEE Biomedical Circuits and Systems Conference (BioCAS),
    Toronto, IEEE, 19-21 October 2023.
    document

  10. An Energy-Efficient High-Voltage Pulser for High-Frequency Ultrasound Medical Applications
    Yidi Xiao; Hassan Rivandi; Tiago L. Costa;
    In IEEE International Symposium on Biomedical Circuits and Systems (IEEE BioCAS),
    2023.

  11. Energy efficiency of pulse shaping in electrical stimulation: the interdependence of biophysical effects and circuit design losses
    Francesc Varkevisser; Tiago Costa; Wouter Serdijn;
    Biomedical Physics & Engineering Express,
    Volume 8, Issue 6, 13 September 2022. DOI: 10.1088/2057-1976/ac8c47
    document

  12. Electronic Platforms and Signal Processing for Magnetoresistive-Based Biochips
    José Germano; Tiago L. Costa; Filipe A. Cardoso; José Amaral; Susana Cardoso; Paulo P. Freitas; Moisés S. Piedade;
    Springer, , 2022. DOI: https://doi.org/10.1007/978-1-4614-3447-4_20

  13. Electronic Platforms and Signal Processing for Magnetoresistive-Based Biochips
    Germano, José; Costa, Tiago; Cardoso, Filipe Arroyo; Amaral, José; Cardoso, Susana; Freitas, Paulo P; Piedade, Moisés S;
    In Handbook of Biochips: Integrated Circuits and Systems for Biology and Medicine,
    Springer New York New York, NY, 2022.

  14. Stent with Piezoelectric Transducers for High Spatial Resolution Ultrasound Neuromodulation - a Finite Element Analysis
    I. Dilevicius; W. A. Serdijn; T. L. Costa;
    In proc. 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC),
    Glasgow, UK, IEEE, pp. 4966-4969, July 2022. DOI: 10.1109/EMBC48229.2022.9871956
    document

  15. Pre-Filtering of Stimuli for Improved Energy Efficiency in Electrical Neural Stimulation
    Francesc Varkevisser; Amin Rashidi; Tiago L. Costa; Vasiliki Giagka; Wouter A. Serdijn;
    In Proc. IEEE Biomedical Circuits and Systems Conference (BioCAS) 2022,
    IEEE, October 2022.
    document

  16. Maximization of transmitted acoustic intensity from silicon integrated piezoelectric ultrasound transducers
    Gandhika Wardhana; Massimo Mastrangeli; Tiago L. Costa;
    In IEEE International Ultrasonics Symposium,
    10-13 October 2022. DOI: 10.1109/IUS54386.2022.9957646

  17. A Brain-on-chip Platform to Study the Optimal Parameters of Focused Ultrasound Neuromodulation
    G. Wardhana; M. Hu; J.-P. Frimat; A. M. J. M. Van den Maagdenberg; T. Costa; M. Mastrangeli;
    In EUROoCS Conference 2022,
    4-5 July 2022.

  18. Brain-on-Chip Platform for Studying the Optimum Parameters of Ultrasound Neuromodulation
    G. Wardhana; M. Mastrangeli; T. Costa;
    In MRS Spring Meeting 2022,
    online, 23 May 2022.

  19. Design of a Flexible Transducer Array and Characterisation of Piezoelectric Sensors for Curvature Compensation
    Christiaan Boerkamp; Tiago L. Costa; Jovana Jovanova;
    In Smart Materials, Adaptive Structures and Intelligent Systems (SMASIS),
    2022. DOI: https://doi.org/10.1115/SMASIS2022-90707

  20. A Parasitic Resistance Extraction Tool Leveraged by Image Processing
    Diogo Dias; João Goes; Tiago L. Costa;
    In IEEE International Symposium on Circuits and Systems (IEEE ISCAS),
    2022. DOI: 10.1109/ISCAS48785.2022.9937879

  21. Maximization of Transmitted Acoustic Intensity from Silicon Integrated Piezoelectric Ultrasound Transducers
    Gandhika W. Wardhana; Massimo Mastrangeli; Tiago L. Costa;
    In IEEE International Ultrasonics Symposium (IEEE IUS),
    2022. DOI: 10.1109/IUS54386.2022.9957646

  22. A High-Frequency Beamforming Channel for Ultrasound Stimulation and Ultrasonic Powering
    Hassan Rivandi; Ishaan Ghosh; Tiago L. Costa;
    In IEEE International Symposium on Biomedical Circuits and Systems (IEEE BioCAS),
    2022. DOI: 10.1109/BioCAS54905.2022.9948550

  23. Application of a sub–0.1-mm3 implantable mote for in vivo real-time wireless temperature sensing
    Chen Shi; Victoria Andino-Pavlovsky; Stephen A. Lee; Tiago Costa; Jeffrey Elloian; Elisa E. Konofagou; Kenneth L. Shepard;
    Science Advances,
    Volume 7, Issue 19, pp. eabf6312, 2021. DOI: 10.1126/sciadv.abf6312
    document

  24. An Integrated 2D Ultrasound Phased Array Transmitter in CMOS with Pixel Pitch-Matched Beamforming
    Tiago Costa; Chen Shi; Kevin Tien; Jeffrey Elloian; Filipe A. Cardoso; Kenneth Shepard;
    IEEE Transactions on Biomedical Circuits and Systems,
    pp. 1, July 2021. DOI: 10.1109/TBCAS.2021.3096722
    document

  25. An integrated 2D ultrasound phased array transmitter in CMOS with pixel pitch-matched beamforming
    Costa, Tiago; Shi, Chen; Tien, Kevin; Elloian, Jeffrey; Cardoso, Filipe Arroyo; Shepard, Kenneth L;
    IEEE Transactions on Biomedical Circuits and Systems,
    Volume 15, Issue 4, pp. 731-742, 2021.

  26. Bidirectional Bioelectronic Interfaces: System Design and Circuit Implications
    Y. Liu; A. Urso; Martins da Ponte, Ronaldo; T. Costa; V. Valente; V. Giagka; W.A. Serdijn; T.G. Constandinou; T. Denison;
    IEEE Solid-State Circuits Magazine,
    Volume 12, Issue 2, pp. 30-46, 23 June 2020. DOI: 10.1109/MSSC.2020.2987506
    document

  27. A 0.065-mm(3) Monolithically-Integrated Ultrasonic Wireless Sensing Mote for Real-Time Physiological Temperature MonitoringSyst
    C. Shi; T. Costa; J. Elloian; Y. Zhang; K.L. Shepard;
    IEEE Trans Biomed Circuits,
    Volume 14, Issue 3, pp. 412-424, June 2020. DOI: 10.1109/TBCAS.2020.2971066.
    document

  28. Ablation of piezoelectric polyvinylidene fluoride with a 193 nm excimer laser
    J. Elloian; J. Sherman; T. Costa; C. Shi; K. Shepard;
    Journal of Vacuum Science & Technology A,
    Volume 38, Issue 3, pp. 033202, February 2020. DOI: 10.1116/1.5142494
    document

  29. A CMOS 2D Transmit Beamformer with Integrated PZT Ultrasound Transducers for Neuromodulation
    T. Costa; C. Shi; K. Tien; K.L. Shepard;
    In Proc. 2019 IEEE Custom Integrated Circuits Conference (CICC'2019),
    Austin, TX, USA, IEEE, pp. 1-4, 21-24 April 2019. DOI: 10.1109/CICC.2019.8780236
    document

  30. Monolithic Integration of Micron-scale Piezoelectric Materials with CMOS for Biomedical Applications
    C. Shi; T. Costa; J. Elloian; K.L. Shepard;
    In Proc. 2018 IEEE International Electron Devices Meeting (IEDM'2018),
    San Francisco, CA, USA, IEEE, pp. 4.5.1-4.5.4, Dec. 1-5 2018. DOI: 10.1109/IEDM.2018.8614632
    document

  31. PDMS Microlenses for Optical Biopsy Microsystems
    J. F. Ribeiro; A. C. Costa; J. M. Gomes; C. G. Costa; S. Goncalves; R. F. Wolffenbuttel; H. Correia;
    IEEE Transactions on Industrial Electronics,
    Volume 64, Issue 12, pp. 9683 - 9690, 2017. DOI: 10.1109/TIE.2017.2716874
    Keywords: ... Biomedical optical imaging;Biopsy;Lenses;Light emitting diodes;Microoptics;Optical device fabrication;Optical imaging;Biomedical imaging;Microlens;Optic microsystem;Optical biopsy;Polydimethylsiloxane (PDMS).

  32. A CMOS Front-End with Integrated Magnetoresistive Sensors for Biomolecular Recognition Detection Applications
    Costa, T.; Cardoso, F.A.; Germano, J.; Freitas, P.P.; Piedade, M.S.;
    IEEE Transactions on Biomedical Circuits and Systems,
    Volume 11, Issue 5, pp. 988-1000, 2017. DOI: 10.1109/TBCAS.2017.2743685

  33. A CMOS front-end with integrated magnetoresistive sensors for biomolecular recognition detection applications
    Costa, Tiago; Cardoso, Filipe Arroyo; Germano, José; Freitas, Paulo P; Piedade, Mois{\'e}s S;
    IEEE transactions on biomedical circuits and systems,
    Volume 11, Issue 5, pp. 988-1000, 2017.

  34. Ultra-low temperature FOWLP process for the embedding of low thermal budget sensors and components using SU-8 as dielectric
    Pinto, Raquel; Cardoso, Andréand Ribeiro, Sara; Brandão, Carlos; Cardoso, Filipe Arroyo; Antunes, M; Gaspar, J; Gill, R; Fonseca, H; Costa, M;
    In 2017 IEEE 67th Electronic Components and Technology Conference (ECTC),
    IEEE, pp. 292-299, 2017.

  35. Monolithic device combining CMOS with magnetoresistive sensors
    Filipe A. Cardoso; Tiago L. Costa; José Germano; Moisés S. Piedade;
    Patent, US9567626B2, 2017.

  36. A 45° saw-dicing process applied to a glass substrate for wafer-level optical splitter fabrication for optical coherence tomography
    M.J. Maciel; C.G. Costa; M.F. Silva; S.B. Gonçalves; A.C. Peixoto; A.F Ribeiro; R.F. Wolffenbuttel; J.H. Correia;
    Journal of Micromechanics and Microengineering,
    Volume 26, Issue 8, pp. 084001, 2016.

  37. A wafer-level miniaturized Michelson interferometer on glass substrate for optical coherence tomography applications
    M.J. Maciel; C.G. Costa; M.F. Silva; A.C. Peixoto; R.F. Wolffenbuttel; J.H. Correia;
    Sensors and Actuators A: Physical,
    Volume 242, pp. 210-216, 2016.

  38. Optical microsystem design and fabrication for medical image magnification
    C.G. Costa; J.M. Gomes; R.F. Wolffenbuttel; J.H. Correia;
    Microsystem Technologies,
    Volume 22, Issue 7, pp. 1747-1755, 2016.

  39. Semi-quantitative method for streptococci magnetic detection in raw milk
    Duarte, C.; Costa, T.; Carneiro, C.; Soares, R.; Jitariu, A.; Cardoso, S.; Piedade, M.; Bexiga, R.; Freitas, P.;
    Biosensors,
    Volume 6, Issue 2, 2016. DOI: 10.3390/bios6020019

  40. Design and optimization of a CMOS front-end for magnetoresistive sensor based biomolecular recognition detection
    Costa, T.; Germano, J.; Piedade, M.S.; Cardoso, F.A.; Freitas, P.P.;
    In Proceedings - IEEE International Symposium on Circuits and Systems,
    pp. 2859-2862, 2016. DOI: 10.1109/ISCAS.2016.7539189

  41. Design and optimization of a CMOS front-end for magnetoresistive sensor based biomolecular recognition detection
    Costa, Tiago; Germano, Jose; Piedade, Moises S; Cardoso, Filipe Arroyo; Freitas, Paulo P;
    In 2016 IEEE International Symposium on Circuits and Systems (ISCAS),
    IEEE, pp. 2859-2862, 2016.

  42. MagCMOS
    Costa, T.; Cardoso, F.A.; Piedade, M.S.; Freitas, P.P.;
    In Handbook of Bioelectronics: Directly Interfacing Electronics and Biological Systems,
    Cambridge University Press, 2015. DOI: 10.1017/CBO9781139629539.015

  43. Frequency independent patterns from double shell lenses fed by leaky wave feeders
    O. Yurduseven; J. R. Costa; C. A. Fernandes; A. Neto;
    In European conference on Antennas and Propagation (EuCAP),
    Lisbon, Portugal, April 2015.

  44. Design and fabrication of an endomicroscopic imaging module for minimally invasive medical devices
    C.G. Costa; J.S. Gomes; R.F. Wolffenbuttel; J.H.G. Correia;
    In R Brama; JL Sánchez-Rojas (Ed.), Proceedings of SPIE Smart Sensors, Actuators, and MEMS VII; and Cyber Physical Systems, vol. 9517,
    SPIE, pp. 95170L-1-9517, 2015.

  45. Imaging amplification for minimally invasive medical devices
    J.H. Correia; J.M. Gomes; G.C. Costa; R.F. Wolffenbuttel; J.P. Carmo;
    In M Paranjape; MA Pavanello (Ed.), Proceedings of the 30th Symposium on Microelectronics Technology and Devices (SBMicro),
    IEEE, pp. 1-4, 2015.

  46. NIR micro beam-splitter by saw-dicing of glass substrate for optical coherence tomography
    M.J. Maciel; C.G. Costa; A.C. Peixoto; R.F. Wolffenbuttel;
    In G Urban; J Wöllenstein; J Kieninger (Ed.), Procedia Engineering (Proceedings of the 29th Eurosensors Conference), vol. 120,
    Elsevier, pp. 807-810, 2015.

  47. Design and wafer-level fabrication of a micro beam splitter for application in optical coherence tomography
    M.J. Maciel; M.F. Silva; A.C. Peixoto; G.C. Costa; R.F. Wolffenbuttel; J.H. Correia;
    In RJ Wiegerink; D Tsoukalas; U. Staufer (Ed.), Proceedings of the 26th Micromechanics and Microsystems Europe workshop,
    2015.

  48. Live demonstration: A CMOS ASIC for precise reading of a Magnetoresistive sensor array for NDT
    Caetano, D.M.; Piedade, M.; Graca, J.; Fernandes, J.; Rosado, L.; Costa, T.;
    In Proceedings - IEEE International Symposium on Circuits and Systems,
    pp. 1906, 2015. DOI: 10.1109/ISCAS.2015.7169039

  49. A neuronal signal detector for biologically generated magnetic fields
    Costa, T.; Piedade, M.S.; Germano, J.; Amaral, J.; Freitas, P.P.;
    IEEE Transactions on Instrumentation and Measurement,
    Volume 63, Issue 5, pp. 1171-1180, 2014. DOI: 10.1109/TIM.2013.2296417

  50. Optical filter for providing the required illumination to enable narrow band imaging
    Silva, MF; Rodrigues, JA; Oliveira, MJ; Fernandes, AR; Pereira, S; Costa, CG; Ghaderi, M; Ayerden, P; Goncalves, LM; De Graaf, G; others;
    In Procedia Engineering (Proceedings of the 28th Eurosensors Conference), vol. 87,
    Elsevier, pp. 1414-1417, 2014.

  51. Optical filter for providing the required illumination to enable narrow band imaging
    M.F. Silva; J.A. Rodrigues; M.J. Oliveira; A.R. Fernandes; S. Pereira; C.G. Costa; M. Ghaderi; P. Ayerden; L.M. Goncalves; G. de Graaf; R.F. Wolffenbuttel; J.H. Correia;
    In Procedia Engineering (Proceedings of the 28th Eurosensors Conference), vol. 87,
    Elsevier, pp. 1414-1417, 2014.

  52. Integration of TMR sensors in silicon microneedles for magnetic measurements of neurons
    Amaral, J.; Pinto, V.; Costa, T.; Gaspar, J.; Ferreira, R.; Paz, E.; Cardoso, S.; Freitas, P.P.;
    IEEE Transactions on Magnetics,
    Volume 49, Issue 7, pp. 3512-3515, 2013. DOI: 10.1109/TMAG.2013.2239274

  53. Measuring brain activity with magnetoresistive sensors integrated in micromachined probe needles
    Amaral, J.; Gaspar, J.; Pinto, V.; Costa, T.; Sousa, N.; Cardoso, S.; Freitas, P.;
    Applied Physics A: Materials Science and Processing,
    Volume 111, Issue 2, pp. 407-412, 2013. DOI: 10.1007/s00339-013-7621-7

  54. Challenges in spintronic platforms for biomedical applications
    Freitas, PP; Cardoso, FA; Martins, VC; Fernandes, Elisabete Ramos; Martins, SAM; Dias, T; Amaral, JP; Cardoso, S; Germano, J; Costa, T; others;
    2013.

  55. CMOS instrumentation system for matrix-based magnetoresistive biosensors
    Costa, T.; Piedade, M.S.; Cardoso, F.A.; Freitas, P.P.;
    In Conference Record - IEEE Instrumentation and Measurement Technology Conference,
    pp. 1315-1318, 2013. DOI: 10.1109/I2MTC.2013.6555626

  56. An instrumentation system based on magnetoresistive sensors for neuronal signal detection
    Costa, T.; Piedade, M.S.; Germano, J.; Amaral, J.; Freitas, P.P.;
    In Conference Record - IEEE Instrumentation and Measurement Technology Conference,
    pp. 1074-1077, 2013. DOI: 10.1109/I2MTC.2013.6555579

  57. CMOS instrumentation system for matrix-based magnetoresistive biosensors
    Costa, Tiago; Piedade, Moises S; Cardoso, Filipe Arroyo; Freitas, Paulo P;
    In 2013 IEEE International Instrumentation and Measurement Technology Conference (I2MTC),
    IEEE, pp. 1315-1318, 2013.

  58. Integration of magnetoresistive biochips on a CMOS circuit
    Cardoso, F.A.; Costa, T.; Germano, J.; Cardoso, S.; Borme, J.; Gaspar, J.; Fernandes, J.R.; Piedade, M.S.; Freitas, P.P.;
    IEEE Transactions on Magnetics,
    Volume 48, Issue 11, pp. 3784-3787, 2012. DOI: 10.1109/TMAG.2012.2198449

  59. Integration of magnetoresistive biochips on a CMOS circuit
    Cardoso, Filipe Arroyo; Costa, T; Germano, J; Cardoso, S; Borme, J; Gaspar, J; Fernandes, JR; Piedade, MS; Freitas, PP;
    IEEE transactions on magnetics,
    Volume 48, Issue 11, pp. 3784-3787, 2012.

  60. An ultra-low noise current source for magnetoresistive biosensors biasing
    Costa, T.; Piedade, M.S.; Santos, M.;
    In 2012 IEEE Biomedical Circuits and Systems Conference: Intelligent Biomedical Electronics and Systems for Better Life and Better Environment, BioCAS 2012 - Conference Publications,
    pp. 73-76, 2012. DOI: 10.1109/BioCAS.2012.6418507

  61. A CMOS circuit for precise reading of matrix addressed magnetoresistive biosensors
    Costa, T.; Piedade, M.S.; Fernandes, J.R.;
    In 2011 IEEE Biomedical Circuits and Systems Conference, BioCAS 2011,
    pp. 389-392, 2011. DOI: 10.1109/BioCAS.2011.6107809

  62. Diode/magnetic tunnel junction cell for fully scalable matrix-based biochip
    F.A. Cardoso; H.A. Ferreira; J.P. Conde; V. Chu; P.P. Freitas; D. Vidal; J. Germano; L. Sousa; M.S. Piedade; B.A. Costa; J.M. Lemos;
    J. Appl. Phys.,
    2006.

  63. CONTROLO 2006
    Costa, BA; Lemos, JM; Piedade, MS; Sousa, L; Almeida, T; Germano, J; Freitas, P; Ferreira, H; Cardoso, F;
    2006.

  64. Diode/magnetic tunnel junction cell for fully scalable matrix-based biochip
    Cardoso, Filipe Arroyo; Ferreira, HA; Conde, JP; Chu, V; Freitas, PP; Vidal, D; Germano, J; Sousa, L; Piedade, MS; Costa, BA; others;
    Journal of Applied Physics,
    Volume 99, Issue 8, pp. 08B307, 2006.

  65. Temperature modelling of a biochip for DNA analysis
    Costa, BA; Lemos, JM; Piedade, MS; Sousa, L; Almeida, T; Germano, J; Freitas, P; Ferreira, H; Cardoso, Filipe Arroyo;
    In 2006 14th Mediterranean Conference on Control and Automation,
    IEEE, pp. 1-5, 2006.

  66. Architecture of a Portable System Based on a Biochip for DNA Recognition
    M. Piedade; L. Sousa; J. Germano; J. Lemos; B. Costa; P. Freitas; H. Ferreira; F. Cardoso; D. Vidal;
    In Proc. of the XX Conference on Design of Circuits and Integrated Systems,
    2005.
    document

  67. Temperature Simulation and Control of a Biochip for DNA Analysis
    B.A. Costa; J.M. Lemos; M.S. Piedade; L. Sousa; P.P. Freitas; F.A. Cardoso; D. Vidal;
    In 44th IEEE Conference on Decision and Control,
    2005.

  68. Architecture of a portable system based on a biochip for DNA recognition
    Piedade, M; Sousa, L; Germano, J; Lemos, J; Costa, B; Freitas, P; Ferreira, H; Cardoso, Filipe Arroyo; Vidal, D;
    In Proc. of the XX conference on Design of Circuits and Integrated Systems,
    2005.

  69. Temperature Simulation and Control of a Biochip for DNA Analysis
    Costa, BA; Lemos, JM; Piedade, MS; Sousa, L; Freitas, P; Cardoso, Filipe Arroyo; Vidal, D;
    In 44th IEEE Conference on Decision and Control,
    2004.

  70. X-ray detector based on a bulk micromachined photodiode combined with a scintillating crystal
    J.G. Rocha; C.G.J. Schabmueller; N.F. Ramos; S. Lanceros-Mendez; M.F. Costa; A.G.R. Evans; R.F. Wolffenbuttel; J.H. Correia;
    Journal of Micromechanics and Microengineering,
    Volume 13, Issue 4, pp. 45-50, 2003.

  71. ISCAS 2016 SPECIAL ISSUE
    Wang, G; Poscente, MD; Park, SS; Andrews, CN; Yadid-Pecht, O; Mintchev, MP; Costa, T; Cardoso, FA; Germano, J; Freitas, PP; others;

BibTeX support

Last updated: 10 Sep 2024