dr. Y.C. Yang
Microwave Sensing, Signals and Systems (MS3), Department of Microelectronics
PhD thesis (Oct 2011): UWB Antennas and MIMO Antenna Arrays Development for Near-Field Imaging
Promotor: Alexander Yarovoy
Expertise: UWB
Themes: Safety and securityPublications
S. Wang; Huiru Yang; Qihang Zong; Qianming Huang; Chunjia Tan; Chenshan Gao; Shinzhen Li; Huaiyu Yem; Guoqi Zhang; Paddy French;
IEEE Sensors Journal,
Volume 24, pp. 7521-7529, 2024. DOI: doi: 10.1109/JSEN.2023.3337233
Keywords: ...
Laser transmission pyrolysis (LTP), metal film, polydimethylsiloxane (PDMS) pattering, stretchable strain sensors, ultraviolet (UV) laser..
Abstract: ...
n recent years, metal crack-based stretchable flexible strain sensors have attracted significant attention in wearable device applications due to their extremely high sensitivity. However, the tradeoff between sensitivity and detection range has been an intractable dilemma, severely limiting their practical applications. Herein, we propose a laser transmission pyrolysis (LTP) technology for fabricating high-performance flexible strain sensors based on (Au) metal cracks with the microchannel array on the polydimethylsiloxane (PDMS) surface. The fabricated flexible strain sensors exhibit high sensitivity [gauge factor (GF) of 2448], wide detection range (59% for tensile strain), precise strain resolution (0.1%), fast response and recovery times (69 and 141 ms), and robust durability (over 3000 cycles). In addition, experiment and simulation results reveal that introducing a microchannel array enables the stress redistribution strategy on the sensor surface, which significantly improves the sensing sensitivity compared to conventional flat surface sensors. Based on the excellent performance, the sensors are applied to detect subtle physiological signals, such as pulse and swallowing, as well as to monitor large-scale motion signals, such as knee flexion and finger bending, demonstrating their potential applications in health monitoring, human–machine interactions, and electronic skin.
Yanwei Chang; Jingxing Zhang; Ruofei Lu; Weiran Li; Yuchen Feng; Yixun Gao; Haihong Yang; Fengnan Wang; Hao Li; Yi-Kuen Lee; Patrick J. French; Ahmad M. Umar Siddiqui; Yao Wang; Guofu Zhou;
Journal of Materials Chemistry C,
Volume 12, pp. 7520-7531, 2024. DOI: DOI: 10.1039/d4tc00091a
Abstract: ...
Fractional exhaled nitric oxide (FeNO) can be used to describe inflammatory processes in the respiratory tract. Directly detecting ppb-level nitric oxide (NO) with chemiresistive sensors at room temperature faces the challenges of simultaneously obtaining high sensitivity and high stability for sensors. We aimed to improve the stability and sensitivity of NO sensors. We assembled sheet-like porphyrin-based MOF DLS-2D-Co-TCPP(Fe) with 5-aminonaphthalene-1-sulfonic acid–rGO (ANS–rGO) nanosheets through coordination interactions. In this way, we offered a room-temperature NO-sensing hybrid, DLS-2D-Co-TCPP(Fe)/ANS–rGO, with a sheet-on-sheet (SOS) architectural heterojunction. The DLS-2D-Co-TCPP(Fe)/ANS–rGO-based sensor demonstrated superior NO-sensing performance, including high sensitivity (Ra/Rg = 1.33, 250 ppb), reliable repeatability, high selectivity, and fast response/recovery (150 s/185 s, 1 ppm) at a sensing concentration from 100 ppb to 10 ppm at room temperature. The obtained sensor showed high stability, retaining >85% of its initial response after 60 days. Designing NO-responsive Fe–N4 active units containing MOF nanosheets, along with constructing a heterojunction with an SOS architecture to facilitate carrier migration, collaboratively dominated the superior performance of synthesized NO sensors. This work provides a strategy for designing SOS architectural heterojunctions to obtain high-performance MOF-based gas-sensing materials.
QM Huang; HR Yang; SG Wang; X Liu; CJ Tanand; QH Zong; CS Gao; SZ Li; PJ French; HY Ye;
ACS Applied Materials & Interface,
Volume 16, 2024. DOI: doi: 10.1021/ascami.4c2139
Shaogang Wang; Qihang Zong; Huiru Yang; Qianming Huang; Huaiyu Ye; Paddy French;
In IEEE (Ed.), IEEE MEMS 2024,
IEEE, January 2024.
Keywords: ...
Stretchable strain sensor, Metal film, UV laser, Laser transmission pyrolysis, PDMS pattering.
Abstract: ...
In recent years, flexible strain sensors based on metal cracks have garnered significant interest for their exceptional sensitivity. However, striking a balance between sensitivity and detection range remains a significant challenge, which often limits its wider application. Herein, we introduce an innovative laser transmission pyrolysis technology to fabricate high performance flexible strain sensors based on (Au) metal cracks with a microchannel array on the PDMS surface. The fabricated flexible strain sensors exhibit high sensitivity, wide detection range, precise strain resolution,fast response and recovery times, and robust durability. Furthermore, this technology has potential applications in
microfluidics, microelectromechanical systems and optical sensing.
Shaogang Wang; Qihang Zong; Huiru Yang; Qianming Huang; Huaiyu Ye; Paddy French;
In IEEE NEMS 2024,
Kyoto, Japan, 2024.
Qian-Ming Huang; Huiru Yang; Shaogang Wang; Guoqi Zhang; Paddy French; Huaiyu Ye;
In Proceedings IEEE NEMS 2024,
IEEE, IEEE, May 2024.
Hongping Liang; Xin Guo; Lanpeng Guo; Siying Liu; Qiuqiang Zhan; Haihong Yang; Hao Li; Nicolaas Frans de Rooij; Yi-Kuen Lee; Paddy J. French; Yao Wang; Guofu Zhou;
Advanced Functional Materials,
Issue 2215099, pp. 10, 2023. DOI: 10.1002/adfm.202215099
Abstract: ...
Constructing near-infrared light (NIR) light-enhanced room temperature gas
sensors is becoming more promising for practical application. In this study,
learning from the structure and photosynthetic process of chlorophyll thylakoid
membranes in plants, the first “Thylakoid membrane” structural formaldehyde
(HCHO) sensor is constructed by matching the upconversion emission of the
lanthanide-doped upconversion nanoparticles (UCNPs) and the UV–vis adsorp-
tion of the as-prepared nanocomposites. The NIR-mediated sensor exhibits
excellent performances, including ultra-high response (Ra / Rg = 2.22, 1 ppm),
low practical limit of detection (50 ppb), reliable repeatability, high selectivity,and broadband spectral response. The practicality of the NIR-mediated gas sensor is confirmed through the remote and external stimulation test. A study of sensing mechanism demonstrates that it is the UCNPs-based light transducer produces more light-induced oxygen species for gas response in the
process of non-radiative/radiative energy transfer, playing a key role in significantly improving the sensing properties of the sensor. The universality of NIR-mediated gas sensors based on UCNPs is verified using ZnO, In2O3, and SnO2 systems. This work paves a way for fabricating high-performance NIR-mediated gas sensors and will expand the application fields of NIR light.
Xiangcheng Liu; Yue Niu; Duo Jin; Junwei Zeng; Wanjiang Li; Lirong Wang; Zhipeng Hou; Yancong Feng; Hao Li; Haihong Yang; Yi-Kuen Lee; Paddy J. French; Yao Wang; Guofu Zhou;
Journal of Colloid and Interface Science,
Volume 649, pp. 909-917, 2023. DOI: https://doi.org/10.1016/j.jcis.2023.06.092.
Keywords: ...
2D materials Transition metal dichalcogenides Gas sensing Patching sulfur vacancies N-doping.
Abstract: ...
Transition metal dichalcogenides (TMDCs) garner significant attention for their potential to create high-performance gas sensors. Despite their favorable properties such as tunable bandgap, high carrier mobility, and large surface-to-volume ratio, the performance of TMDCs devices is compromised by sulfur vacancies, which reduce carrier mobility. To mitigate this issue, we propose a simple and universal approach for patching sulfur vacancies, wherein thiol groups are inserted to repair sulfur vacancies. The sulfur vacancy patching (SVP) approach is applied to fabricate a MoS2-based gas sensor using mechanical exfoliation and all-dry transfer methods, and the resulting 4-nitrothiophenol (4NTP) repaired molybdenum disulfide (4NTP-MoS2) is prepared via a sample solution process. Our results show that 4NTP-MoS2 exhibits higher response (increased by 200 %) to ppb-level NO2 with shorter response/recovery times (61/82 s) and better selectivity at 25 °C compared to pristine MoS2. Notably, the limit of detection (LOD) toward NO2 of 4NTP-MoS2 is 10 ppb. Kelvin probe force microscopy (KPFM) and density functional theory (DFT) reveal that the improved gas sensing performance is mainly attributed to the 4NTP-induced n-doping effect on MoS2 and the corresponding increment of surface absorption energy to NO2. Additionally, our 4NTP-induced SVP approach is universal for enhancing gas sensing properties of other TMDCs, such as MoSe2, WS2, and WSe2.
Shaogang Wang; Qihang Zong; Huiru Yang; Chunjian Tan; Qianming Huang; Xu Liu; Guoqi Zhang; Paddy French; Huaiyu Ye;
Applied Materials and Interfaces,
2023. DOI: https://doi.org/10.1021/acsami.3c04290
Keywords: ...
flexible pressure sensor, UV laser, laser direct writing, continuous laser pyrolysis, PDMS, micro-truncated pyramid.
Abstract: ...
The fabrication of flexible pressure sensors with low cost, high scalability, and easy fabrication is an essential driving force in developing flexible electronics, especially for high-performance sensors that require precise surface microstructures. However, optimizing complex fabrication processes and expensive microfabrication methods remains a significant challenge. In this study, we introduce a laser pyrolysis direct writing technology that enables rapid and efficient fabrication of high-performance flexible pressure sensors with a microtruncated pyramid array. The pressure sensor demonstrates exceptional sensitivities, with the values of 3132.0, 322.5, and 27.8 kPa−1 in the pressure ranges of 0−0.5, 0.5−3.5, and 3.5−10 kPa, respectively.
Furthermore, the sensor exhibits rapid response times (loading: 22 ms,
unloading: 18 ms) and exceptional reliability, enduring over 3000
pressure loading and unloading cycles. Moreover, the pressure sensor can be easily integrated into a sensor array for spatial pressure distribution detection. The laser pyrolysis direct writing technology introduced in this study presents a highly efficient and promising approach to designing and fabricating high-performance flexible pressure sensors utilizing micro-structured polymer substrates.
Honghao Chen; Ruofei Lu; Yixun Gao; Xiaorui Yue; Haihong Yang; Hao Li; Yi-Kuen Lee; Paddy J. French; Yao Wang; Guofu Zhouab;
Journal of Materials Chemistry A,
Volume 11, Issue 21959-21971, 2023. DOI: https://doi.org/10.1039/D3TA04685K
Abstract: ...
Inspired by the CO2-induced reversible activation mechanism of the slow anion channel 1 (SLAC1) in plant stomatal guard cells during plant photosynthesis, we designed and prepared a CO2- switchable H+/OH− ion channel (CSPH ion channel). A high-performance chemiresistive room temperature CO2 sensor has been prepared based on this CSPH ion channel. The obtained CO2 room temperature sensor γ-CD-MOF@RhB exhibits high sensitivity (Rg/R0 = 1.50, 100 ppm), excellent selectivity, good stability (less than 5% reduction in 30 days response value), and 99.96% consistency with commercial infrared CO2 meter. The practical limit of detection (pLOD) of the γ-CD-MOF@RhB sensor reaches 10 ppm at room temperature toward CO2, which is the lowest for reported MOF-derived chemiresistive room temperature CO2 sensors so far. Ion conduction mechanism studies have shown that the CSPH ion channel behaves as a CO2-switchable H+/OH− ion channel with a switching point of approximately 60 000 ppm CO2. As an application attempt, the fabricated low pLOD CO2 sensor has been used for human exhaled CO2 detection to compare CO2 concentration in the breath of individuals before and after exercise and COVID-19. It was also logically indicated that the average concentration of human exhaled CO2 after COVID-19 recovery is different for undiseased subjects.
Zhijian Mai; Nengjie Cao; Erzhuo Cheng; Zhiwen Zeng; Yancong Feng; Yao Wang; Paddy J. French; Yi-Kuen Lee; Haihong Yang; Bin Yang; Hao Li; Guofu Zhou;
Applied Nano Materials,
Volume 6, pp. 19807-19817, 2023. DOI: https://doi.org/10.1021/acsanm.3c03611
Keywords: ...
small-molecule prodrug, Schiff base linkage, aggregation-induced emission, self-assembly, tumor-targeted diagnosis and therapy.
Abstract: ...
To develop multifunctional small-molecule prodrugs is highly desirable for cancer treatment but remains challenging in intrinsic traceability. As an acid-cleavable linkage, a Schiff bases benefiting from its distinctive fluorescence quenching ability was selected to prepare a small-molecule prodrug with
cancer-targeted and self-indicating. In this study, we designed and developed a multifunctional self-assembled nanobomb of amphiphilic TPE-Lenalidomide prodrug, which comprises a hydrophobic aggregation-induced emission (AIE) probe 4-(1,2,2-
triphenylvinyl)benzaldehyde (TPE-CHO) and a hydrophilic anticancer drug Lenalidomide via a Schiff base linkage. We investigated the synergistic effect of d-PET and CN isomerization which would keep the fluorescence of TPE-Lenalidomide in the “always off” state by density functional theory (DFT) calculation. Once reaching the pathological site, such a vesicular nanobomb of TPE-Lenalidomide will be acidolyzed to release the AIE probe and Lenalidomide molecules simultaneously, consequently realizing high-efficiency effects of tumor imaging and cancer therapy (cell viability: normal cell L929, ∼79.49%; cancer cell 4T1, ∼27.08%; p = 0.000118). This work may pave an avenue to prepare small-molecule prodrugs for tumor-targeted diagnosis and cancer therapy.
Yang, Y.; Huang, M.; Du, S.; Martins, R. P.; Lu, Y.;
IEEE Transactions on Circuits and Systems I: Regular Papers,
Volume 70, Issue 11, pp. 4595-4604, 2023. DOI: 10.1109/TCSI.2023.3307869
Shaogang Wang; Huiru Yang; Qihang Zong; Qianming Huang; Chunjian Tan; Chenshan Gao; Shizhen Li; Huaiyu Ye; Guoqi Zhangand; Paddy French;
IEEE Sensors Journal,
2023. DOI: doi: 10.1109/JSEN.2023.3337233
Keywords: ...
Stretchable strain sensors, Metal film, UV laser, Laer transmission pyrolysis, PDMS pattering..
Abstract: ...
In recent years, metal crack-based stretchable flexible strain sensors have attracted significant attention in wearable device applications due
to their extremely high sensitivity. However, the trade-off between sensitivity and detection range has been an intractable dilemma, severely limiting their practical applications. Herein, we propose a laser transmission pyrolysis technology for fabricating high-performance flexible strain sensors based on (Au) metal cracks with the microchannel array on the polydimethylsiloxane
(PDMS) surface. The fabricated flexible strain sensors exhibit high sensitivity (gauge factor of 2448), wide detection range (59% for tensile strain), precise strain resolution (0.1%), fast response and recovery times (69 ms and 141 ms), and robust durability (over 3000 cycles). In addition, experiment and simulation results reveal that introducing a microchannel array enables the stress distribution strategy on the sensor surface, which significantly improves the sensing sensitivity compared to conventional flat surface sensors. Based on the excellent performance, the sensors are applied to detect subtle physiological signals such as pulse and swallowing, as well as to monitor large-scale motion signals such as knee flexion and finger bending, demonstrating their potential applications in health monitoring, human-machine interactions, and electronic skin
Hu, Huiyun; Guo, Lanpeng; Liang, Hongping; Lu, Ruofei; Lv, Sitao; Wang, Chenxu; Liu, Liming; Yang, Haihong; Lee, Yi-Kuen; French, Paddy J.; Li, Hao; Wang, Yao; Zhou, Guofu;
Current Chinese Science,
Volume 3, pp. 275-284, 2023. DOI: https://doi-org.tudelft.idm.oclc.org/10.2174/221029810366623
Keywords: ...
ZnO, graphene, dipole, formaldehyde, room temperature gas sensor, HCHO sensor.
Abstract: ...
Background: Formaldehyde (HCHO) is one of the sources of indoor air pollution
and a recognized carcinogenic gas, which sets a huge threat to human health. Therefore, it is urgent to develop a formaldehyde gas sensor with high efficiency, low consumption, and low limit of detection.
Methods: With solvothermal and supramolecular assembly methods, we fabricate a nanocom-posite of ZnO/5-aminonaphthalene-1-sulfonic acid (ANS)-reduced graphene oxide (rGO) through in situ assembling flower-like ZnO nanoclusters on ANS-modified graphene nanosheets for room temperature formaldehyde detection.
Results: The flower-like ZnO/ANS-rGO based gas sensor exhibits high response (32%, 5 ppm), ultra-fast response/recovery times (18/23 s), high selectivity, long-term stability and a low practical limit of detection (pLOD) of 1 ppm toward HCHO at room temperature, offering significant advantages and competitiveness in chemiresistive room temperature HCHO sensors.
Conclusion: The unique flower-like nanostructure of ZnO and the functionalization with ANS molecules jointly improved the HCHO sensing performance of the composite at room temperature. This work provides a new approach to designing and preparing high-performance room temperature gas sensing materials
Xinyue Wang; Zhoudong Yang; Pan Liu; Guoqi Zhang; Jing Zhang;
In Proc. of Electronic Components and Technology Conference (ECTC),
2023.
Yuanyuan Guo; Quan Wang; Hao Li; Yixun Gao; Xuezhu Xu; Biao Tang; Yao Wang; Bai Yang; Yi-Kuen Lee; Paddy J. French; Guofu Zhou;
ACS Nano,
Volume 16, pp. 11, 2022. DOI: 10.1021/acsnano.1c09999
Keywords: ...
fluorescent pattern, tunable intensity, surface microstructure, laser direct writing, carbon dots.
Abstract: ...
Fluorescent patterns with multiple functions enable highsecurity anti-counterfeiting labels. Complex material synthesis and patterning processes limit the application of multifunctional fluorescent patterns, so the technology of in situ fluorescent patterning with tunable multimodal capabilities is becoming more necessary. In this work, an in situ fluorescent patterning technology was developed using laser direct writing on solid cellulose film at ambient conditions without masks. The fluorescent intensity and surface microstructure of the patterns could be adjusted by programmable varying of the laser parameters simultaneously. During laser direct writing, carbon dots are generated in situ in a cellulose ester polymer matrix, which significantly simplifies the fluorescent patterning process and reduces the manufacturing cost. Interestingly, the tunable fluorescent intensity empowers the fabrication of visual stereoscopic fluorescent patterns with excitation dependence, further improving its anti-counterfeiting performance. The obtained fluorescent patterns still show ultrahigh optical properties after being immersed in an acid/base solution (pH 5−12) over one month. In addition, the anti-UV performance of the obtained laser-patterned film with transmittance around 90% is comparable to that of commercial UV-resistant films. This work provided an advanced and feasible approach to fabricating programmable, performance-tunable, subtle fluorescent patterns in large-scale for industrial application.
C-K Yang; E van der Drift; PJ French;
IOP JMM,
Volume 32, Issue 103002, 2022. DOI: https://doi.org/10.1088/1361-6439/ac8559
Abstract: ...
Reducing sensor dimension is a good way to increase system sensitivity and response. However the advantages gained must be weighed against other effects
which also became significant during the scaling process. In this paper, the scaling effect of cantilever sensors from micrometer to nanometer regimes is reviewed. Changes in the physical properties such as Q-factor, Young's modulus, noise and nonlinear deflections, as well as effects on practical sensor applications such as sensor response and sensor readouts, are presented. Since cantilever is an elemental transducer and device building block, its scaling effects can be further extrapolated to other sensing systems and applications.
Chang, Z.; Zhang, Y.; Yang, C.; Luo, Y.; Du, S.; Chen, Y.; Zhao, B.;
IEEE Transactions on Circuits and Systems I: Regular Papers,
pp. 1-12, 2022. DOI: 10.1109/TCSI.2022.3201196
Yang, Ximei; Guendel, Ronny G.; Yarovoy, Alexander; Fioranelli, Francesco;
In 2022 IEEE Radar Conference (RadarConf22),
pp. 1-6, 2022. DOI: 10.1109/RadarConf2248738.2022.9763903
Yang, Maosheng; Isufi, E.; Leus, G.;
In Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Singapore, pp. 8847--8851, May 2022. DOI: 10.1109/ICASSP43922.2022.9746017
Boyu Zhou; Yier Lin; Julien Le Kernec; Shufan Yang; Francesco Fioranelli; Olivier Romain; Zhiqin Zhao;
IET Radar, Sonar and Navigation,
Volume n/a, Issue n/a, 2021. DOI: https://doi.org/10.1049/rsn2.12049
document
Yang, Fawei; Xu, Feng; Fioranelli, Francesco; Le Kernec, Julien; Chang, Shaoqiang; Long, Teng;
IET Radar, Sonar \& Navigation,
2021. DOI: https://doi.org/10.1049/rsn2.12082
document
Ji, Haoran; Hou, Chunping; Yang, Yang; Fioranelli, Francesco; Lang, Yue;
IEEE Signal Processing Letters,
Volume 28, pp. 2182-2186, 2021. DOI: 10.1109/LSP.2021.3122344
Hongyu Tang; Chenshan Gao; Huiru Yang; Leandro Nicolas Sacco; Robert Sokolovskij; Hongze Zheng; Huaiyu Ye; Sten Vollebregt; Hongyu Yu; Xuejun Fan; Guoqi Zhang;
2D Materials,
2021. DOI: 10.1088/2053-1583/ac13c1
Zhaokun Wang; Chenshan Gao; Shuhan Hou; Huiru Yang; Ziyuan Shao; Siyuan Xu; Huaiyu Ye;
Materials Today Communications,
Volume 28, pp. 102654, 2021. DOI: 10.1016/j.mtcomm.2021.102654
document
Dai, H.; Chen, Y.; Dai, W.; Hu, Z.; Xie, F.; Xu, W.; Cui, Z.; Wei, X.; Chen, Z.; Yang, B.; Zhang, W.; Wei, W.; Guo, R.; Zhang, GuoQi;
Advanced Materials Technologies,
Volume 6, Issue 3, 2021. DOI: 10.1002/admt.202000848
document
Yang, Maosheng; Coutino, M.; Leus, G.; Isufi, E.;
IEEE Open Journal of Signal Processing,
Volume 2, pp. 85--98, 2021. DOI: 10.1109/OJSP.2021.3056897
Li, Zhenghui; Le Kernec, Julien; Fioranelli, Francesco; Romain, Olivier; Zhang, Lei; Yang, Shufan;
In 2021 IEEE Radar Conference (RadarConf21),
pp. 1-6, 2021. DOI: 10.1109/RadarConf2147009.2021.9455218
X. Li; F. Fioranelli; S. Yang; O. Romain; J. Le Kernec;
In IET International Radar Conference (IET IRC 2020),
pp. 1373-1379(6), January 2021. DOI: 10.1049/icp.2021.0566
B. Zhou; J. Le Kernec; S. Yang; F. Fioranelli; O. Romain; Z. Zhao;
In IET International Radar Conference (IET IRC 2020),
pp. 1515-1520(5), January 2021. DOI: 10.1049/icp.2021.0571
Z. Li; F. Fioranelli; S. Yang; L. Zhang; O. Romain; Q. He; G. Cui; J. Le Kernec;
In IET International Radar Conference (IET IRC 2020),
pp. 1744-1749(5), January 2021. DOI: 10.1049/icp.2021.0557
H. Jiang; F. Fioranelli; S. Yang; O. Romain; J. Le Kernec;
In IET International Radar Conference (IET IRC 2020),
pp. 1595-1599(4), January 2021. DOI: 10.1049/icp.2021.0556
Yang, Maosheng; Isufi, E.; Schaub, M.T.; Leus, G.;
In Proc. of European Signal Processing Conference (EUSIPCO),
Dublin, Ireland, pp. 2005--2009, August 2021. DOI: 10.23919/EUSIPCO54536.2021.9616185
Leus, G.; Yang, Maosheng; Coutino, M.; Isufi, E.;
In Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Toronto, Ontario, Canada, pp. 5385--5399, June 2021. DOI: 10.1109/ICASSP39728.2021.9414275
X. Li; Y. He; F. Fioranelli; X. Jing; A. Yarovoy; Y. Yang;
IEEE Transactions on Geoscience and Remote Sensing,
2020. DOI: 10.1109/TGRS.2020.3028223
Robert Sokolovskij; Jian Zhang; Hongze Zheng; Wenmao Li; Yang Jiang; Gaiying Yang; Hongyu Yu; Pasqualina M. Sarro; Guoqi Zhang;
IEEE Sensors,
Volume 20, Issue 16, pp. 8947-8955, 2020.
document
Hanqing Dai; Wenqian Xu; Zhe Hu; Yuanyuan Chen; Bobo Yang; Zhiyong Xiong; Danlu Su; Xian Wei; Shiliang Mei; Zhihao Chen; Min Li; Wanlu Zhang; Fengxian Xie; Wei Wei; Ruiqian Guo; GuoQi Zhang;
Materialia,
Volume 12, pp. 100750, 2020. DOI: 10.1016/j.mtla.2020.100750
document
Dai, Hanqing; Xu, Wenqian; Hu, Zhe; Chen, Yuanyuan; Wei, Xian; Yang, Bobo; Chen, Zhihao; Gu, Jing; Yang, Dan; Xie, Fengxian; Zhang, Wanlu; Guo, Ruiqian; Zhang, Guoqi; Wei, Wei;
Frontiers in Energy Research,
Volume 8, pp. 97, 2020. DOI: 10.3389/fenrg.2020.00097
document
Miao Cai; Peng Cui; Yikang Qin; Daoshuang Geng; Qiqin Wei; Xiyou Wang; Daoguo Yang; Guoqi Zhang;
Entropy: international and interdisciplinary journal of entropy and information studies,
Volume 22, Issue 2, February 2020. DOI: 10.3390/e22020254
S. Li; M. Jia; J. L. Kernec; S. Yang; F. Fioranelli; O. Romain;
In 2020 International Conference on UK-China Emerging Technologies (UCET),
August 2020. DOI: 10.1109/UCET51115.2020.9205464
M. Jia; S. Li; J. L. Kernec; S. Yang; F. Fioranelli; O. Romain;
In 2020 International Conference on UK-China Emerging Technologies (UCET),
August 2020. DOI: 10.1109/UCET51115.2020.9205461
Maosheng Yang; M. Coutino; E. Isufi; G. Leus;
In 29th European Signal Processing Conference (EUSIPCO 2020),
Amsterdam (Netherlands), EURASIP, pp. 845-849, August 2020.
document
Qiuling Yang; M. Coutino; Gang Wang; G.B. Giannakis; G. Leus;
In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 5555-5559, 2020. DOI: 10.1109/ICASSP40776.2020.9054665
document
Fioranelli, Francesco; Shah, Syed Aziz; Li, Haobo; Shrestha, Aman; Yang, Shufan; Le Kernec, Julien;
ELECTRONICS LETTERS,
Volume 55, Issue 19, pp. 1022-1024, SEP 19 2019. DOI: 10.1049/el.2019.2378
Liu, T.; Qin, H.; Yang, D.; GuoQi Zhang;
Coatings,
2019. DOI: 10.3390/COATINGS9060390
Hongyu Tang; Chunjian Tan; Huiru Yang; Kai Zheng; Yutao Li; Huaiyu Ye; Xianping Chen; Xuejun Fan; Tianling Ren; Kuochi Zhang;
Physical Chemistry Chemical Physics,
pp. 14713-14721, 2019. DOI: 10.1039/c9cp02084e
Cai, M.; Liang, Y.; Yun, M.; Chen, X-Y.; Yan, H.; Yu, Z.; Yang, D.; GuoQi Zhang;
IEEE Access,
2019. DOI: 10.1109/ACCESS.2019.2900361
Niu, F.; Cai, M.; Pang, J.; Li, X.; GuoQi Zhang, G.; Yang, D.;
Surface Science,
2019. DOI: 10.1016/j.susc.2019.02.008
Feng, C.; Qin, H.; Yang, D.; GuoQi Zhang;
Materials,
2019. DOI: 10.3390/ma12040676
Chenshan Gao; Yingying Zhang; Huiru Yang; Yang Liu; Yufei Liu; Jihe Dua; Huaiyu Ye; GuoQi Zhang;
Applied Surface Science,
2019. DOI: 10.1016/j.apsusc.2019.07.067
S. Yang; J. L. Kernec; F. Fioranelli; O. Romain;
In 2019 International Radar Conference (RADAR),
pp. 1-4, 2019. DOI: 10.1109/RADAR41533.2019.171367
Lin, Yier; Le Kernec, Julien; Yang, Shufan; Fioranelli, Francesco; Romain, Olivier; Zhao, Zhiqin;
IEEE SENSORS JOURNAL,
Volume 18, Issue 23, pp. 9669-9681, DEC 1 2018. DOI: 10.1109/JSEN.2018.2872849
H. Y. Ye; F. F. Hu; Hongyu Tang; L. W. Yang; X. P. Chen; L. G. Wang; GuoQi Zhang;
Physical Chemistry Chemical Physics,
Volume 20, Issue 23, pp. 16067-16076, 2018.
Liu, L.; Yang, Q.; Wang, Z.; Ye, H.; Chen, X.; Fan, X.; GuoQi Zhang;
Applied Surface Science,
pp. 575-581, 2018. DOI: 10.1016/j.apsusc.2017.10.084
Qin, H.; Kuang, T.; Luan, X.; Li, W.; Xiao, J.; Zhang, P.; Yang, D.; GuoQi Zhang;
Crystals,
2018. DOI: 10.3390/cryst8110428
Yang, N.; Yang, D.; GuoQi Zhang; Chen, L.; Liu, D.; Cai, M.; Fan, X.;
Sensors,
2018. DOI: 10.3390/s18020422
Yang, H.; Wang, Z.; Ye, H.; Zhang, K.; Chen, X.; GuoQi Zhang;
Applied Surface Science,
pp. 554-561, 2018. DOI: 10.1016/j.apsusc.2018.08.014
Le Kernec, Julien; Fioranelli, Francesco; Yang, Shufan; Lorandel, Jordane; Romain, Olivier;
In PROCEEDINGS OF THE 2018 26TH IFIP/IEEE INTERNATIONAL CONFERENCE ON VERY LARGE SCALE INTEGRATION (VLSI-SOC),
IFIP; IEEE; IEEE Circuits \& Syst Soc; IEEE Council Elect Design Automat; Synopsys; ACM Special Interest Grp Design Automat; Univ Verona; AICA; Univ Verona, Comp Sci Dept, pp. 163-167, 2018. 26th IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC), Verona, ITALY, OCT 08-10, 2018.
Loukas, Charalampos; Fioranelli, Francesco; Le Kernec, Julien; Yang, Shufan;
In 2018 16TH IEEE INT CONF ON DEPENDABLE, AUTONOM AND SECURE COMP, 16TH IEEE INT CONF ON PERVAS INTELLIGENCE AND COMP, 4TH IEEE INT CONF ON BIG DATA INTELLIGENCE AND COMP, 3RD IEEE CYBER SCI AND TECHNOL CONGRESS (DASC/PICOM/DATACOM/CYBERSCITECH),
IEEE; IEEE Comp Soc; IEEE Tech Comm Scalable Comp; IEEE Syst Man \& Cybernet, Tech Comm Cybermat; IEEE Computat Intelligence Soc, Smart World Tech Comm, pp. 441-445, 2018. 16th IEEE Int Conf on Dependable, Autonom and Secure Comp/16th IEEE Int Conf on Pervas Intelligence and Comp/4th IEEE Int Conf on Big Data Intelligence and Comp/3rd IEEE Cyber Sci and Technol Congress (DASC/PiCom/DataCom/CyberSciTech), Athens, GREECE, AUG. DOI: 10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00088
Zhen Cui; Yingying Zhang; Qun Yang; GuoQi Zhang; Xianping Chen;
In IEEE 2nd Electron Devices Technology and Manufacturing Conference (EDTM),
2018. DOI: 10.1109/EDTM.2018.8421434
R. Yang; M. A. P. Pertijs; S. Nihtianov;
IEEE Journal of Solid-State Circuits,
Volume 52, Issue 11, pp. 3018-3031, November 2017. DOI: 10.1109/jssc.2017.2734900
Abstract: ...
This paper presents a high-precision capacitance-to-digital converter (CDC) for displacement measurement in advanced industrial applications, based on a charge-balancing third-order delta–sigma modulator. To achieve high precision, this CDC employs a precision external resistive reference and a quartz-oscillator-based time reference instead of a reference capacitor. To minimize the error contribution of the CDC circuitry, various precision circuit techniques, such as chopping and auto-zeroing, are applied at both system and circuit level. Measurement results of the prototype realized in 0.35-μm CMOS technology show that the CDC achieves an rms resolution of 42 aF across a capacitance range from 6 to 22 pF, corresponding to an effective number of bits (ENOB) of 16.7 bit. The conversion time for one measurement is 10.5 ms, during which the CDC consumes 230 μA from a 3.3-V single supply. The measured thermal stability is within ±7.5 ppm/°C across a temperature range from 20 °C to 70 °C, which represents a significant improvement compared to the state of the art. After a two-point calibration, all ten measured samples from one batch show absolute accuracy below ±25 fF across the entire capacitance measurement range.
J Xiao; QQ Wei; DG Yang; P Zhang; N He; GuoQi Zhang; XP Chen;
IEEE Journal of Selected Topics in Quantum Electronics,
Volume 23, Issue 4, 2017.
M Cai; D Yang; J Huang; M Zhang; X Chen; C Liang; S Koh; GuoQi Zhang;
IEEE Photonics Journal,
Volume 9, Issue 1, pp. 1-14, 2017.
C Tan; Q Yang; H Ye; X Chen; GuoQi Zhang;
In Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2017 18th International Conference on,
2017.
Y Zhang; K Zheng; X Chen; GuoQi Zhang; C Tan; Q Yang; J Jiang; H Ye;
In Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2017 18th International Conference on,
2017.
L Liu; Q Yang; H Ye; X Chen; GuoQi Zhang;
In Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2017 18th International Conference on,
2017.
K Zheng; H Ye; GuoQi Zhang; Y Zhang; L Liu; J Jiang; Q Yang; C Tan; X Chen;
In Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2017 18th International Conference on,
2017.
Q Yang; C Tan; H Ye; X Chen; GuoQi Zhang;
In Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2017 18th International Conference on,
2017.
Jing Xiao; Qi-Qin Wei; Dao-Guo Yang; Ping Zhang; Ning He; GuoQi Zhang;
IEEE Electron Device Letters,
Volume 37, Issue 4, 2016.
Jianlin Huang; D. S. Golubović; S. Koh; D. Yang; X. Li; X. Fan; GuoQi Zhang;
IEEE Transactions on Electron Devices,
Volume 63, pp. 2807-2814, 2016.
Xian-Ping Chen; Ning Yang; Jun-Ke Jiang; Qiu-Hua Liang; Dao-Guo Yang; GuoQi Zhang;
IEEE Electron Device Letters,
Volume 36, Issue 6, 2015.
Jianlin Huang; D. S. Golubović; S. Koh; D. Yang; X. Li; X. Fan; GuoQi Zhang;
Optics Express,
Volume 23, pp. A966-A978, 2015.
Jianlin Huang; D.S. Golubović; S. Koh; D. Yang; X. Li; X. Fan; GuoQi Zhang;
IEEE Transactions on Device and Materials Reliability,
Volume 15, Issue 2, pp. 220-228, 2015.
X P Chen; J K Jiang; Q H Liang; N Yang; Huaiyu Ye; M Cai; L Shen; D G Yang; T L Ren;
Scientific Reports,
Volume 5, pp. 16907, 2015.
J. Robertson; S. Esconjauregui; L. D’Arsie; J. Yang; H. Sugime; G. Zhong; Y. Guo; S. Vollebregt; R. Ishihara; C. Cepek; G. Duesberg; T. Hallam;
In Extended Abstracts of the 2015 International Conference on Solid State Devices and Materials (SSDM),
2015.
R. Yang; S. Nihtianov;
In O Kaynak (Ed.), Proc. of the 23rd IEEE International Symposium on Industrial Electronics,
IEEE, pp. 274-280, 2014. Harvest.
R. Yang; S. Nihtianov;
In JC Miguez; D Slomovitz (Ed.), Proc. of the IEEE International Instrumentation and Measurement Technology Conference,
IEEE, pp. 1182-1186, 2014. Harvest.
R. Yang; M. A. P. Pertijs; S. Nihtianov; P. Haak;
In Proc. IEEE International Conference on Industrial Technology (ICIT),
IEEE, pp. 358‒390, March 2014. DOI: 10.1109/icit.2014.6894896
R. Yang; S. Nihtianov;
In RC Luo (Ed.), Proc. of the 22nd IEEE International Symposium on Industrial Electronics,
IEEE, pp. 1-5, 2013. Harvest.
O.S. van de Ven; D. Yang; S. Xia; J.P. van Schieveen; J.W. Spronck; R.H. Munnig Schmidt; S. Nihtianov;
In M Kamel; F Karray; H Hagras (Ed.), Proc. of the 3rd International Conference on Autonomous and Intelligent Systems,
Springer Verlag, pp. 10-17, 2012.
A. Bossche; J.F.L. Goosen; H. Sadeghian Marnani; C.K. Yang; A. van Keulen; P.J. French;
Patent, 2005687, OCT-10-039 2012.
C.K. Yang;
PhD thesis, Delft University of Technology, 2012.
G. Pandraud; E. Margallo-Balbas; C.K. Yang; P.J. French;
Journal of Lightwave Technology,
Volume 29, Issue 5, pp. 744-749, 2011. DOI 10.1109/JLT.2011.2108264.
YC Yang; A Yarovoy; SE Valavan; K Buisman; O Shoykhetbrod;
International Journal of Microwave and Wireless Technologies,
Volume 3, Issue Special issue 02, pp. 171--177, 2011.
V. Rajaraman; L. Pakula; H. Yang; P.J. French; P.M. Sarro;
International Journal of Advances in Engineering Sciences and Applied Mathematics,
pp. 1-7, 2011.
G. Pandraud; E. Margallo-Balbás; C.K. Yang; P.J. French;
Journal of Lightwave Technology,
Volume 29, Issue 5, pp. 744-749, 2011.
Michael J. Chen; Yan Li; Maria Elena De Obaldia; Qi Yang; Amanda D. Yzaguirre; Tomoko Yamada-Inagawa; Chris S. Vink; Avinash Bhandoola; Elaine Dzierzak; Nancy A. Speck;
Cell Stem Cell,
Volume 9, Issue 6, pp. 541--552, December 2011. DOI: 10.1016/j.stem.2011.10.003
document
J. van Schieveen; R. Yang; S. Nihtianov; J. Spronck;
In S Bogosyan; K Ohnishi (Ed.), Proc. of the IEEE International Conference on Mechatronics,
IEEE, pp. 648-653, 2011.
M.R. Nabavi; R. Yang; S. Nihtianov;
In {Dyer et al.}, C (Ed.), Proc. of the International Instrumentation and Measurement Technology Conference,
IEEE, pp. 58-62, 2011.
R. Nojdelov; R. Yang; X. Guo; S. Nihtianov;
In S Mukhopadhyay; A Fuchs; KP Jayasundera (Ed.), Proc. of the IEEE Fifth International Conference on Sensing Technology,
IEEE, pp. 140-144, 2011.
R. Yang; A. Fekri; R. Nojdelov; S. Nihtianov;
In E Lewis; T Kenny (Ed.), Proc. of the IEEE Sensors conference,
IEEE, pp. 1181-1184, 2011.
Yang, Y.;
PhD thesis, Delft University of Technology, Delft, October 2011.
document
V. Rajaraman; L.S. Pakula; H. Yang; P.J. French; P.M. Sarro;
International journal of advances engineering sciences and applied mathematics,
Volume 2, Issue 1-2, pp. 28-34, 2010. DOI 10.1007/s12572-010-0020-9.
H. Sadeghian; C.K. Yang; K. Babaei Gavan; J.F.L. Goosen; EW.J.M. van der Drift; H.S.J. van der Zant; A. Bossche; P.J. French; F. van Keulen;
Journal of Micromechanics and Microengineering,
Volume 20, Issue 10, pp. 105027-105036, 2010.
H. Sadeghian Marnani; C.K. Yang; J.F.L. Goosen; A. Bossche; U. Staufer; P.J. French; F. van Keulen;
Journal of Micromechanics and Microengineering,
Volume 20, Issue 064012, pp. 1-8, 2010.
G. Pandraud; A.B. Neira; E. Margallo Balbas; C.K. Yang; P.M. Sarro;
IEEE Photonics Technology Letters,
Volume 22, Issue 6, pp. 398-400, 2010.
TG Savelyev; X Zhuge; YC Yang; PJ Aubry; A Yarovoy; LP Ligthart; B Levitas;
International Journal of Microwave and Wireless Technologies,
Volume 2, Issue 3-4, pp. 369--377, 2010.
H. Sadeghian Marnani; D. Yang; J.F.L. Goosen; A. Bossche; P.J. French; F. van Keulen;
Sensors and Actuators A: Physical: an international journal devoted to research and development of physical and chemical transducers,
Volume 162, pp. 220-224, 2010.
TG Savelyev; X Zhuge; YC Yang; A Yarovoy; LP Ligthart; M Drozdov; B Levitas;
B Levitas (Ed.);
Geozondas Ltd. / IEEE, , pp. 240--243, 2010.
YC Yang; A Yarovoy; O Shoykhetbrod; D Nuessler;
s.n. (Ed.);
s.n., , pp. 779--782, 2010.
N Haider; YC Yang; DP Tran; A Yarovoy;
s.n. (Ed.);
IEEE society, , pp. 1--5, 2010. 12-16 April 2010, Barcelona, Spain, E-ISBN : 978-84-7653-472-4 Print ISBN: 978-1-4244-6431-9.
F. Yang; L. Sbaiz; E. Charbon; S. Susstrunk; M. Vetterli;
In IS\&T/SPIE Electronic Imaging Meeting,
January 2010.
document
Haider, N.; Yang, B.; Tran, D.P.; Yarovoy, A.G.;
In Antennas and Propagation (EuCAP), 2010 Proceedings of the Fourth European Conference on,
pp. 1-5, April 2010.
document
R. Yang; J.P. van Schieveen; S. Nihtianov; J.W. Spronck;
In s.n. (Ed.), Proceedings IECON 2010,
IEEE, pp. 1779-1784, 2010.
R. Yang; J.P. van Schieveen; S. Nihtianov; J.W. Spronck;
In {Rodríguez et al}, J (Ed.), Proceedings ICIT 2010,
IEEE, pp. 1581-1586, 2010.
H. Sadeghian Marnani; C.K. Yang; H. Goosen; A. Bossche; P.J. French; F. van Keulen;
In {Fedder et al}, G (Ed.), Proceedings Sensors 2010,
IEEE, pp. 631-634, 2010.
H. Sadeghian Marnani; C. Yang; F. van Keulen; J.F.L. Goosen; A. Bossche;
2010.
H. Sadeghian Marnani; C.K. Yang; J.F.L. Goosen; E. Drift; A. Bossche; P.J. French; F. van Keulen;
Applied Physics Letters,
Volume 94, Issue 221903, pp. 1-3, 2009.
H. Sadeghian Marnani; C.K. Yang; K. Babaei Gavan; J.F.L. Goosen; EW.J.M. van der Drift; H.S.J. van der Zant; A. Bossche; P.J. French; F. van Keulen;
E-Journal of Surface Science and Nanotechnology,
Volume 7, pp. 161-166, 2009.
H. Sadeghian; C.K. Yang; K. Babaei Gavan; J.F.L. Goosen; EW.J.M. van der Drift; H.S.J. van der Zant; P.J. French; A. Bossche; F. van Keulen;
s.n. (Ed.);
IEEE Computer Society, , pp. 396-399, 2009.
B Yang; A Yarovoy; LP Ligthart;
s.n. (Ed.);
s.n., , pp. 1--3, 2009.
B Yang; A Yarovoy; PJ Aubry; X Zhuge;
s.n. (Ed.);
IEEE society, , pp. 97--100, 2009.
YC Yang; A Yarovoy; LP Ligthart;
s.n. (Ed.);
VDE Verlag GMBH, , pp. 817--821, 2009.
Luciano Sbaiz; Feng Yang; Edoardo Charbon; Sabine Susstrunk; Martin Vetterli;
In Proc. IEEE ICASSP,
Taipei (Taiwan), IEEE, April 2009.
document
Feng Yang; L. Sbaiz; E. Charbon; S. Susstrunk; Martin Vetterli;
In IEEE 12th International Conference on Computer Vision, Ninth Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras (OMNIVIS 2009),
Kyoto (Japan), IEEE, pp. 2212-2219, September 2009.
document
E. Margallo; C.K. Yang; G. Pandraud; P.J. French;
In Proceedings of IEEE SENSORS 2009,
Christchurch, NZ, pp. 1557-1561, 2009.
F. Santagata; C.K. Yang; J.F. Creemer; P.J. French; P.M. Sarro;
In PM Sarro & C Hierold (Eds.), Proceedings of IEEE MEMS 2009 Conference,
Sorrento, Italy, IEEE, pp. 848-851, 2009.
D.H.B. Wicaksono; G. Pandraud; C.K. Yang; J. Dankelman; P.J. French;
In J. Brugger; D. Briand (Ed.), Eurosensors XXIII,
Lausanne, Switzerland, Elsevier, pp. 770-773), 2009.
document
D.H.B. Wicaksono; G. Pandraud; C.K. Yang; J. Dankelman; P.J. French;
In J Brugger; D Briand (Ed.), Procedia Chemistry, Volume 1, Issue 1,
Elsevier, pp. 770-773, 2009.
C.K. Yang; A. Bossche; P.J. French; H. Sadeghian Marnani; J.F.L. Goosen; F. van Keulen; K. Babaei Gavan; H.S.J. van der Zant; EW.J.M. van der Drift;
In {Makhopadhyay, S.C.} (Ed.), Proceedings of the IEEE Sensors 2009 Conference, 25-28 October 2009, Christchurch, New Zealand,
IEEE, pp. 869-872, 2009.
F. Santagata; C.K. Yang; J.F. Creemer; P.J. French; P.M. Sarro;
In P.M. Sarro; C Hierold (Ed.), Single wafer surface micromachined field emission electron source,
IEEE, pp. 848-851, 2009.
E. Margallo; C.K. Yang; G. Pandraud; P.J. French;
In SC Mukhopadhyay (Ed.), Proceedings of IEEE SENSORS 2009,
IEEE, pp. 1557-1561, 2009.
E. Margallo; C.K. Yang; G. Pandraud; P.J. French;
In s.n. (Ed.), Proceedings of IEEE Sensors 2009,
IEEE, pp. 1557-1561, 2009.
H. Sadeghian Marnani; C.K. Yang; J.F.L. Goosen; A. Bossche; U. Staufer; P.J. French; F. van Keulen;
In s.n. (Ed.), Proceedings of the MicroMechanics Europe 2009 Conference, September 20-22, 2009, Toulouse, France,
MME, pp. 1-4, 2009.
C.K. Yang; H. Sadeghian Marnani; K. Babaei Gavan; J.F.L. Goosen; E. Drift; H.S.J. van der Zant; A. Bossche; F. van Keulen; P.J. French;
In s.n. (Ed.), Proceedings of the Sense of Contact 11, 8 April 2009, Zeist, The Netherlands,
Sense of Contact 2009, pp. 1-6, 2009.
H. Sadeghian Marnani; C.K. Yang; J.F.L. Goosen; A. Bossche; P.J. French; F. van Keulen;
In s.n. (Ed.), Proceedings of ProRISC 2009, 20th Annual Workshop on circuits, Systems and Signal Processing, SAFE 2009, 12th Annual Workshop on Semiconductor Advances for Future Electronics and Sensors, November 26-27, 2009, Veldhoven, The Netherlands,
ProRISC en SAFE, pp. 108-111, 2009.
D.H.B. Wicaksono; G. Pandraud; C.K. Yang; J. Dankelman; P.J. French;
In s.n. (Ed.), Proceedings of Eurosensors, XXIII 2009,
s.n., pp. 770-773, 2009.
H. Sadeghian Marnani; C.K. Yang; J.F.L. Goosen; A. Bossche; P.J. French; F. van Keulen;
In {Brugger, J.}; {Briand, D.} (Ed.), Proceedings of the Eurosensors XXIII Conference, 6-9 September 2009, Lausanne, Switzerland,
Elsevier, pp. 1387-1390, 2009.
H. Sadeghian Marnani; C.K. Yang; J.F.L. Goosen; A. Bossche; P.J. French; F. van Keulen;
In {Brugger, J.}; {Briand, D.} (Ed.), Proceedings of the Eurosensors XXIII Conference, 6-9 September 2009, Lausanne, Switzerland,
Elsevier, pp. 1387-1390, 2009.
Shenario Ezhil, Valavan; Yang, Bill; Yarovoy, Alexander; Ligthart, Leo;
In 2009 3rd European Conference on Antennas and Propagation,
pp. 1467--1468, 2009.
H. Sadeghian Marnani; C.K. Yang; F. van Keulen; J.F.L. Goosen; A. Bossche; P.J. French;
2009. Op naam van TU Delft; 2003643; Op naam van TU Delft.
H. Sadeghian Marnani; F. van Keulen; C.K. Yang; J.F.L. Goosen; A. Bossche;
2009. Op naam van TU Delft; 2003431; Op naam van TU Delft.
C.K. Yang;
PhD thesis, Delft University of Technology, 2009.
J.A. Pouwelse; P.J. Garbacki; J. Wang; A. Bakker; J. Yang; A. Iosup; D.H.J. Epema; M.J.T. Reinders; {van Steen}, MR; HJ Sips;
Concurrency and Computation: Practice & Experience,
Volume 20, Issue 2, pp. 127-138, 2008.
C.K. Yang; A.J. le Fèbre; G. Pandraud; EW.J.M. van der Drift; P.J. French;
Journal of Vacuum Science and Technology. Part B: Microelectronics and Nanometer Structures,
Volume 26, Issue 3, pp. 927-933, 2008.
P.J. French; C.K. Yang;
Sensors & Transducers,
pp. 1-9, 2008.
YC Yang; O Vorobyov; A Yarovoy; LP Ligthart; S Rentsch; J Muller;
s.n. (Ed.);
IEEE society, , pp. 117--120, 2008.
SE Valavan; YC Yang; A Yarovoy; LP Ligthart;
s.n. (Ed.);
Horizon House, , pp. 200--203, 2008.
YC Yang; X Zhuge; A Yarovoy; LP Ligthart;
s.n. (Ed.);
Horizon House, , pp. 463--466, 2008. Euma proceedings - Ook in Proceedings of the 38th European Microwave conference.
F. Santagata; C.K. Yang; J.F. Creemer; P.M. Sarro;
In s.n. (Ed.), Proceedings Eurosensors XXII,
Dresden, Germany: Eurosensors XXII, pp. 625-628, 2008.
document
C.K. Yang; G. Pandraud; K. Babaei Gavan; EW.J.M. van der Drift; P.J. French;
In s.n. (Ed.), Proceedings of SAFE 2008,
STW, pp. 527-530, 2008.
E. Margallo-Balbás; C.K. Yang; P.J. French;
In s.n. (Ed.), Proceedings of sense of contact X,
Sense of Contact 2009, pp. 1-6, 2008.
C.K. Yang; E. Margallo Balbas; G. Pandraud; P.J. French;
In s.n. (Ed.), Proceedings of First Mediterranean Photonics Conference,
mediterranean photonics, pp. 48-50, 2008. NEO.
L. Pakula; H. Yang; P.J. French;
In s.n. (Ed.), Proceedings of ASDAM 2008,
Slovak academy of sciences, pp. 227-230, 2008.
L. Pakula; H. Yang; P.J. French;
In s.n. (Ed.), Proceedings of APCOT 2008,
IEEE, pp. 1-4, 2008.
F. Santagata; C.K. Yang; J.F. Creemer; P.M. Sarro;
In s.n. (Ed.), Proceedings Eurosensors XXII,
Eurosensors XXII, pp. 625-628, 2008.
C.K. Yang; G. Pandraud; K. Babaei Gavan; EW.J.M. van der Drift; P.J. French;
In s.n. (Ed.), Proceedings of APCTP-ASEAN workshop on Advanced Material Science and Nanotechnology,
APCTP-ASEAN, pp. 1088-1092, 2008.
C.K. Yang; A.J. le Febre; G. Pandraud; EW.J.M. van der Drift; P.J. French;
In s.n. (Ed.), apcot, pp. 200-203, 2008.
YC Yang; A Yarovoy; LP Ligthart;
s.n. (Ed.);
IET, , pp. 1--6, 2007.
A Yarovoy; W Qiu; YC Yang; PJ Aubry;
s.n. (Ed.);
IET, , pp. 1--6, 2007.
V. Rajaraman; G. Craciun; H. Yang; EW.J.M. van der Drift; P.J. French;
In s.n. (Ed.), SOG fabrication of bulk micromachined and bonded capacitive inertial sensor structures,
SAFE, pp. 617-620, 2007.
C.K. Yang; P.J. French; EW.J.M. van der Drift; J.R. Kim; P. Hadley;
In S. Lee; M Esashi (Ed.), Proceedings of the 5th IEEE Conference on Sensors 2006,
IEEE, pp. 1207-1210, 2007.
V. Rajaraman; G. Craciun; H. Yang; L. Pakula; EW.J.M. van der Drift; K.A.A. Makinwa; P.J. French;
In {A. Liu, J.Wu, C. Lu}; {C.D. Reddy} (Ed.), MEMS Technology and Devices,
pan Stanford, pp. 238-241, 2007.
C.K. Yang; EW.J.M. van der Drift; P.J. French;
In G.C.M. Meyer (Ed.), Field emission for sensor applications,
Sense of Contact 2009, pp. 1-6, 2007.
C.K. Yang; A.J. le Fèbre; G. Pandraud; EW.J.M. van der Drift; P.J. French;
In P.J. French (Ed.), Safe 2007,
Technology Foundation, pp. 1-4, 2007.
L. Pakula; P.J. French; H. Yang;
In s.n. (Ed.), Proceedings of APCOT 2006,
apcot, pp. 1-5, 2006.
C.K. Yang; P.J. French; EW.J.M. van der Drift;
In STW (Ed.), Proceedings of the 9th annual workshop on Semiconductor Advances for Future Electronics and Sensors 2006,
s.l., pp. 404-407, 2006.
L. Pakula; P.J. French; H. Yang;
s.n. (Ed.);
s.l., , pp. 1-4, 2005. NEO.
G. Pandrau; C.K. Yang; P.J. French; P.M. Sarro;
In Proc. Eurosensors XIX,
2005.
document
C.K. Yang; G. Pandraud; EW.J.M. van der Drift; P.J. French;
In s.n. (Ed.), Proceedings of the STW programs,
STW, pp. 181-185, 2005. Editor onbekend JH/STW.
C.K. Yang; K. Babaei Gavan; G. Pandraud; A.J. Katan; EW.J.M. van der Drift; P.J. French;
In s.n. (Ed.), Proceedings of the 16th MME MicroMechanics Europe Workshop,
s.n., pp. 316-319, 2005. Editor onbekend JH.
L. Pakula; H. Yang; P.J. French;
In {R Reus}, de; {S Bouwstra} (Ed.), Eurosensors XIX, proceedings,
IEEE, pp. 1-4, 2005. Editor onbekend.
G. Pandraud; C.K. Yang; P.J. French; P.M. Sarro;
In s.n. (Ed.), Eurosensors XIX,
IEEE, pp. 1-4, 2005. 100% EI, sb.
L. Pakula; H. Yang; T.M.H. Pham; P.J. French; P.M. Sarro;
Journal of Micromechanics and Microengineering,
Volume 14, pp. 1478-1483, 2004. ed.is niet bekend.
L. Pakula; H. Yang; P.J. French;
In The sense of contact 6: where industry meets science workshop sensortechnology,
s.n., pp. 1-4, 2004. ed. is niet bekend.
L. Pakula; H. Yang; P.J. French; P.M. Sarro;
In SAFE bdf98e4d646247d79cef99391c2b9226 ProRISC 2004; Proceedings of semiconductor advances for future electronics,
STW Technology Foundation, pp. 769-773, 2004. ed. is niet bekend.
L. Pakula; H. Yang; P.J. French;
In ICEE 2004; Coference proceedings of the international conference on electrical engineering 2004 joint conference with AsiPcific conference of tranducers and micro-nano technology 2004,
ICEE, pp. 163-167, 2004. ed. is niet bekend.
G. Craciun; H. Yang; L. Pakula; EW.J.M. van der Drift; P.J. French;
In Takashi KAWAMURA; Eun-Woong LEE; Yanchang Lu; Kwan James (Ed.), ICEE2004; Conference proceedings of the International conference of elecrical engineering 2004,
The Institute of the Electrical Engineers of Japan, pp. 174-178, 2004. ed. is niet bekend.
M. Bao; H. Yang; Y. Sun; P.J. French;
Journal of Micromechanics and Microengineering,
Volume 13, pp. 795-800, 2003.
G. Pandraud; H. Yang; L.S. Pakula; H.T.M. Pham; P.J. French; P.M. Sarro;
In Proc. SAFE 2003,
Veldhoven, The Netherlands, pp. 631-634, Nov. 2003. ISBN 90-73461-39-1.
L.S. Pakula; H. Yang; H.T.M. Pham; P.J. French; P. M. Sarro;
In Proc. 16th IEEE International MEMS conference,
Kyoto, Japan, pp. 502-505, Jan. 2003.
document
L. Pakula; H. Yang; P.J. French;
In s.n. (Ed.), SAFE 2003 Semiconductor advances for future electronics,
Stichting voor de Technische Wetenschappen, pp. 707-710, 2003. CD-ROM.
G. Craciun; H. Yang; L. Pakula; M.A. Blauw;
In s.n. (Ed.), SAFE 2003 Semiconductor advances for future electronics,
Stichting voor de Technische Wetenschappen, pp. 683-686, 2003. CD-ROM.
G. Pandraud; H. Yang; L. Pakula; T.M.H. Pham; P.J. French; P.M. Sarro;
In s.n. (Ed.), SAFE 2003 Semiconductor advances for future electronics,
Stichting voor de Technische Wetenschappen, pp. 631-634, 2003. CD-ROM.
L. Pakula; H. Yang; P.J. French;
In s.n. (Ed.), SAFE 2003 Semiconductor advances for future electronics,
Stichting voor de Technische Wetenschappen, pp. 753-756, 2003. CD-ROM.
H. Yang; L. Pakula; P.J. French;
In s.n. (Ed.), MME 2003 14th Micromechanics Europe workshop,
s.n., pp. 33-36, 2003.
L. Pakula; H. Yang; P.J. French;
In s.n. (Ed.), IEEE Sensors 2003,
IEEE, pp. 761-764, 2003. CD-rom.
G. Craciun; H. Yang; L. Pakula; M.A. Blauw; EW.J.M. van der Drift; P.J. French;
In s.n. (Ed.), IEEE Sensors 2003,
IEEE, pp. 440-444, 2003. CD-rom.
L. Pakula; H. Yang; T.M.H. Pham; P.J. French; P.M. Sarro;
In s.n. (Ed.), MEMS 2003 IEEE 16th annual international conference on micro electro mechanical systems,
IEEE, pp. 502-505, 2003.
H. Yang; L. Pakula; P.J. French;
In s.n. (Ed.), EUROSENSORS 17th European conference on solid-state transducers,
University of Minho, pp. 204-207, 2003.
L. Pakula; H. Yang; T.M.H. Pham; P.M. Sarro; P.J. French;
In s.n. (Ed.), EUROSENSORS 17th European conference on solid-state transducers,
University of Minho, pp. 635-638, 2003.
F.D. van der Meer; P. Dijk; H. van der Werff; H. Yang;
Terra Nova: the European journal of geosciences,
Volume 24, Issue 1, pp. 1-17, 2002.
F.D. van der Meer; H. Yang; S.B. Kroonenberg; H. Lang; P. Dijk; K.H. Scholte; H. van der Werff;
F.D. van der Meer; {de Jong}, S (Ed.);
Kluwer Academic Publishers, , pp. 219-232, 2002. Nog niet eerder opgevoerd.
L.S. Pakula; H. Yang; H.T.M. Pham; P.J. French; P.M. Sarro;
In Proc. SeSens 2002,
Veldhoven, The Netherlands, STW, pp. 649-652, Nov. 2002. ISBN 90-73461-33-2.
G. Craciun; H. Yang; H.W. van Zeijl; L. Pakula; M.A. Blauw; E. van der Drift; P.J. French;
In Proc. SeSens 2002,
Veldhoven, The Netherlands, STW, pp. 612-615, Nov. 2002. ISBN 90-73461-33-2.
H. Yang; L. Pakula; P.J. French;
In Proceedings SeSens 2002,
STW Stichting voor de Technische Wetenschappen, pp. 700-703, 2002.
H. Yang; L. Pakula; P.J. French;
In Xiamen University Press, pp. 303-306, 2002.
G. Craciun; H. Yang; H.W. van Zeijl; L. Pakula; M.A. Blauw; EW.J.M. van der Drift; P.J. French;
In Proceedings of SeSens 2002,
STW Stichting voor de Technische Wetenschappen, pp. 612-614, 2002.
L. Pakula; H. Yang; T.M.H. Pham; P.J. French; P.M. Sarro;
In Proceedings of SenSens 2002,
STW Stichting voor de Technische Wetenschappen, pp. 649-652, 2002.
G. Craciun; H. Yang; M.A. Blauw; EW.J.M. van der Drift; P.J. French;
In MME'02 micromechanics Europe,
Nat. Inst. for Res. and Development in Microtechnologies, pp. 55-58, 2002.
L. Pakula; H. Yang; T.M.H. Pham; P.J. French; P.M. Sarro;
In MME'02 micromechanics Europe,
Nat. Inst. for Res. and Development in Microtechnoplogies, pp. 295-298, 2002.
M. Bao; H. Yang; Y. Sun;
In Eurosensors 2002,
Czech Technical University, pp. 43-44, 2002.
H. Yang; M. Bao; L. Pakula; P.J. French;
In {PD Franzon} (Ed.), Proceedings of SPIE Vol. 4593,
SPIE Press, pp. 307-313, 2001.
H. Yang; L. Pakula; M. Bao; P.J. French;
In SAFE - ProRISC - SeSens 2001: proceedings. Semiconductor Advances for Future Electronics - Program for Research on Integrated Systems and Circuits - Semiconductor Sensor and Actuator Technology,
STW Technology Foundation, pp. 888-891, 2001.
F.D. van der Meer; H. Yang; S.B. Kroonenberg; H. Lang; P. Dijk; K.H. Scholte; H. van der Werff;
{van der Meer}, F; {de Jong}, S (Ed.);
Kluwer Academic Publishers, , pp. 219-238, 2000.
O. Thomas; B. Chenevier; E.J. Mittemeijer; J.E. Sundgren; D. de Boer; A. Charaï; L. Roux; P. Gergaud; A Böttger; H. Yang; F Torregrossa; A Leenaers; P Sandstrom;
TU Delft, , 1999.
Y. ZY. Huang.T. Wang; D.S. Jiang; Y.P. Yang; X.M. Jiang; J.Y. Wu; L.S. Xiu; W.L. Zheng;
Appl. Phys. Lett.,
Volume 68, Issue 8, pp. 1147, 1996.
Y. ZY. Huang.T. Wang; W.Q. Ma; W. Wang; X.P. Yang; Z.G. Chen; D.S. Jiang; H.Z. Zheng;
In Proc.SPIE,
pp. 75, 1996.
BibTeX support
Last updated: 11 Mar 2015
Yu-Che Yang
Alumnus- Left in 2011
- Now: Brightsight BV (Netherlands)
- Personal webpage