MSc G. Vlachogiannakis

PhD student
Electronic Circuits and Architectures (ELCA), Department of Microelectronics


Promotor: Marco Spirito, Leo de Vreede

Expertise: Analog/Mixed-Signal/RF IC Design, Biomedical Electronics

Themes: Health and Wellbeing

Biography

Gerasimos Vlachogiannakis obtained the diploma in electrical and computer engineering from the National Technical University of Athens, Greece in 2011 and the Msc degree (cum laude) in microelectronics in 2013 from the Delft University of Technology, the Netherlands, where he is currently working towards a PhD degree. He has been involved in the design of integrated cirtuit building blocks and full-chip designs in advance CMOS technologies such as microwave power amplifiers, and RF frequency synthesizers. His current research interests include mixed-signal, analog and RF integrated circuit design, and microwave measurement techniques. In his current research, he is involved in analog/Mixed-signal and RF circuit design for biomedical purposes (INFORMER project). He is a member of the IEEE since 2010.

Integrated Near Field sensOrs for high Resolution MicrowavE spectRoscopy

The goal of this project is the creation of a new class of sensors, enabling fast and accurate dielectric characterization of biological samples, with high-sensitivity and high-spatial resolution.

  1. Equivalent Circuit Modeling of a Single-Ended Patch Sensing Element in Integrated Technology
    Thippur Shivamurthy, H.; Z. Hu; G. Vlachogiannakis; M. Spirito; A. Neto;
    IEEE Transactions on Microwave Theory and Techniques,
    Volume 68, Issue 1, pp. 17-26, Jan. 2020. DOI: 10.1109/TMTT.2019.2956938

  2. Equivalent Circuit Modeling of a Single-Ended Patch Sensing Element in Integrated Technology
    Shivamurthy, Harshitha Thippur; Hu, Zhebin; Vlachogiannakis, Gerasimos; Spirito, Marco; Neto, Andrea;
    IEEE Transactions on Microwave Theory and Techniques,
    Volume 68, Issue 1, pp. 17-26, 2020. DOI: 10.1109/TMTT.2019.2956938

  3. Miniaturized Broadband Microwave Permittivity Sensing for Biomedical Applications
    G. Vlachogiannakis; Z. Hu; H. T. Shivamurthy; A. Neto; M. A. P. Pertijs; M. Spirito; L. C. N. de Vreede;
    IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology,
    Volume 3, Issue 1, pp. 48--55, March 2019. DOI: 10.1109/JERM.2018.2882564
    Abstract: ... A compact sensing pixel for the determination of the localized complex permittivity at microwave frequencies is proposed. Implemented in the 40-nm CMOS, the architecture comprises a square patch, interfaced to the material-under-test sample, that provides permittivity-dependent admittance. The patch admittance is read out by embedding the patch in a double-balanced, RF-driven Wheatstone bridge. The bridge is cascaded by a linear, low-intermediate frequency switching downconversion mixer, and is driven by a square wave that allows simultaneous characterization of multiple harmonics, thus increasing measurement speed and extending the frequency range of operation. In order to allow complex permittivity measurement, a calibration procedure has been developed for the sensor. Measurement results of liquids show good agreement with theoretical values, and the measured relative permittivity resolution is better than 0.3 over a 0.1-10-GHz range. The proposed implementation features a measurement speed of 1 ms and occupies an active area of 0.15x0.3 mm², allowing for future compact arrays of multiple sensors that facilitate 2-D dielectric imaging based on permittivity contrast.

  4. Miniaturized Broadband Microwave Permittivity Sensing for Biomedical Applications
    Vlachogiannakis, Gerasimos; Hu, Zhebin; Shivamurthy, Harshitha Thippur; Neto, Andrea; Pertijs, Michiel A. P.; de Vreede, Leo C. N.; Spirito, Marco;
    IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology,
    Volume 3, Issue 1, pp. 48-55, 2019. DOI: 10.1109/JERM.2018.2882564

  5. Miniaturized Broadband Microwave Permittivity Sensing for Biomedical Applications
    G. Vlachogiannakis; Z. Hu; Thippur Shivamurthy, H.; A. Neto; M.A.P. Pertijs; L.C.N. de Vreede; M. Spirito;
    IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology,
    Volume 3, Issue 1, pp. 48-55, Mar. 2019. DOI: 10.1109/JERM.2018.2882564

  6. A 40-nm CMOS Complex Permittivity Sensing Pixel for Material Characterization at Microwave Frequencies
    Vlachogiannakis, Gerasimos; Pertijs, Michiel A. P.; Spirito, Marco; de Vreede, Leo C. N.;
    IEEE Transactions on Microwave Theory and Techniques,
    Volume 66, Issue 3, pp. 1619-1634, 2018. DOI: 10.1109/TMTT.2017.2753228

  7. A 40-nm CMOS Complex Permittivity Sensing Pixel for Material Characterization at Microwave Frequencies
    G. Vlachogiannakis; M. A. P. Pertijs; M. Spirito; L. C. N. de Vreede;
    IEEE Transactions on Microwave Theory and Techniques,
    Volume 66, Issue 3, pp. 1619-1634, March 2018. DOI: 10.1109/tmtt.2017.2753228
    Abstract: ... A compact sensing pixel for the determination of the localized complex permittivity at microwave frequencies is proposed. Implemented in the 40-nm CMOS, the architecture comprises a square patch, interfaced to the material-under-test sample, that provides permittivity-dependent admittance. The patch admittance is read out by embedding the patch in a double-balanced, RF-driven Wheatstone bridge. The bridge is cascaded by a linear, low-intermediate frequency switching downconversion mixer, and is driven by a square wave that allows simultaneous characterization of multiple harmonics, thus increasing measurement speed and extending the frequency range of operation. In order to allow complex permittivity measurement, a calibration procedure has been developed for the sensor. Measurement results of liquids show good agreement with theoretical values, and the measured relative permittivity resolution is better than 0.3 over a 0.1-10-GHz range. The proposed implementation features a measurement speed of 1 ms and occupies an active area of 0.15x0.3 mm², allowing for future compact arrays of multiple sensors that facilitate 2-D dielectric imaging based on permittivity contrast.

  8. A 5x5 Microwave Permittivity Sensor Matrix in 0.14-μm CMOS
    Z. Hu; G. Vlachogiannakis; M. A. P. Pertijs; L. C. N. de Vreede; M. Spirito;
    In Proc. IEEE MTT-S International Microwave Symposium (IMS),
    6 2018. DOI: 10.1109/MWSYM.2018.8439438

  9. A Compact Energy Efficient CMOS Permittivity Sensor Based on Multi-Harmonic Downconversion and Tunable Impedance Bridge
    G. Vlachogiannakis; Z. Hu; H. T. Shivamurthy; A. Neto; M. A. P. Pertijs; L. C. N. de Vreede; M. Spirito;
    In Int. Microwave Biomedical Conference (IMBioC),
    pp. 1--3, June 2018. DOI: 10.1109/IMBIOC.2018.8428950
    Abstract: ... This paper presents a 0.15×0.3 mm2 complex permittivity sensor integrated in a 40-nm CMOS node. A single-ended patch, employed as a near-field sensing element, is integrated with a double-balanced, fully-differential tunable impedance bridge that is driven by a square RF pulse. The multi-harmonic, intermediate-frequency down-conversion architecture achieves a compact form factor and fast multi-frequency readout. Measurement results show good agreement with theoretical values and the measured relative permittivity variation remains below 0.3 over a 0.1-10 GHz range at a 1-ms measurement time. The energy efficiency resulting from the fast measurement time and the record-small active area allows integration in battery-operated wearables.

  10. A Compact Energy Efficient CMOS Permittivity Sensor Based on Multiharmonic Downconversion and Tunable Impedance Bridge
    Vlachogiannakis, G.; Hu, Z.; Shivamurthy, H. Thippur; Neto, A.; Pertijs, M.A.P; de Vreede, L. C. N.; Spirito, M.;
    In 2018 IEEE International Microwave Biomedical Conference (IMBioC),
    pp. 1-3, 2018. DOI: 10.1109/IMBIOC.2018.8428950

  11. A 5×5 Microwave Permittivity Sensor Matrix in O.14-m CMOS
    Hu, Zhebin; Vlachogiannakis, Gerasimos; Pertijs, Michiel A.P.; de Vreede, Leo; Spirito, Marco;
    In 2018 IEEE/MTT-S International Microwave Symposium - IMS,
    pp. 1160-1163, 2018. DOI: 10.1109/MWSYM.2018.8439438

  12. A 40-nm CMOS permittivity sensor for chemical/biological material characterization at RF/microwave frequencies
    G. Vlachogiannakis; M. Spirito; M. A. P. Pertijs; L. C. N. de Vreede;
    In Proc. IEEE MTT-S International Microwave Symposium (IMS),
    IEEE, pp. 1‒4, May 2016. DOI: 10.1109/mwsym.2016.7540260

  13. A 40-nm CMOS permittivity sensor for chemical/biological material characterization at RF/microwave frequencies
    Vlachogiannakis, Gerasimos; Spirito, Marco; Pertijs, Michiel A. P.; de Vreede, Leo C.N.;
    In 2016 IEEE MTT-S International Microwave Symposium (IMS),
    pp. 1-4, 2016. DOI: 10.1109/MWSYM.2016.7540260

  14. An I/Q-mixer-steering interferometric technique for high-sensitivity measurement of extreme impedances
    G. Vlachogiannakis; H. T. Shivamurthy; M. A. D. Pino; M. Spirito;
    In 2015 IEEE MTT-S International Microwave Symposium,
    pp. 1-4, May 2015.

BibTeX support

Last updated: 28 Jan 2022

Gerasimos Vlachogiannakis

Alumnus