InForMed

Publications

  1. Monolithic Integration of a Smart Temperature Sensor on a Modular Silicon-based Organ-on-a-Chip Device
    Martins da Ponte, Ronaldo; Nikolas Gaio; Henk van Zeijl; Sten Vollebregt; Paul Dijkstra; Ronald Dekker; Wouter A. Serdijn; Vasiliki Giagka;
    Sensors and Actuators A: Physical,
    Nov. 21 2020. ISSN 0924-4247.
    Keywords: ... Organs-on-a-chip; Smart temperature sensor; Time-mode domain signal processing; MEMS; CMOS Monolithic Integration; MEMS-Electronics co-fabrication.

    Abstract: ... One of the many applications of organ-on-a-chip (OOC) technology is the study of biological processes in human induced pluripotent stem cells (iPSCs) during pharmacological drug screening. It is of paramount importance to construct OOCs equipped with highly compact in situ sensors that can accurately monitor, in real time, the extracellular fluid environment and anticipate any vital physiological changes of the culture. In this paper, we report the co-fabrication of a CMOS smart sensor on the same substrate as our silicon-based OOC for real-time in situ temperature measurement of the cell culture. The proposed CMOS circuit is developed to provide the first monolithically integrated in situ smart temperature-sensing system on a micromachined silicon-based OOC device. Measurement results on wafer reveal a resolution of less than ±0.2 °C and a nonlinearity error of less than 0.05% across a temperature range from 30 °C to 40 °C. The sensor's time response is more than 10 times faster than the time constant of the convection-cooling mechanism found for a medium containing 0.4 ml of PBS solution. All in all, this work is the first step towards realising OOCs with seamless integrated CMOS-based sensors capable to measure, in real time, multiple physical quantities found in cell culture experiments. It is expected that the use of commercial foundry CMOS processes may enable OOCs with very large scale of multi-sensing integration and actuation in a closed-loop system manner.

    document

  2. Ultra-Low-Noise Signal-Recording Amplifier/MUX ASIC
    A. Safarpour; R. Lotfi; W. A. Serdijn;
    In Proc. Design of Medical Devices Conf. (DMD) 2017 Microfabrication for Medical Devices,
    Eindhoven, the Netherlands, 14 – 15 Nov. 2017.
    document

BibTeX support