Qinwen Fan

Publications

  1. Degradation of optical materials in solid-state lighting systems
    M. Yazdan Mehr; A. Bahrami; W.D. van Driel; X.J. Fan; J. L. Davis; Kouchi Zhang;
    International Materials Reviews,
    Volume 65, Issue 2, pp. 102-128, 2020.

  2. The interface adhesion of CaAlSiN3: Eu2+ phosphor/silicone used in light-emitting diode packaging: a first principles study
    Zhen Cui; Jiajie Fan; Hendrik Joost van Ginkel; Xuejun Fan; Kouchi Zhang;
    Applied Surface Science,
    2020. DOI: https://doi.org/10.1016/j.apsusc.2020.145251

  3. A Reliability Prediction Methodology for LED Arrays
    Bo Sun; Jiajie Fan; Xuejun Fan; Kouchi Zhang; Guohao Zhang;
    IEEE Access,
    Volume 7, pp. 8127-8134, 2019.

  4. Effects of sintering pressure on the densification and mechanical properties of nanosilver double side sintered power module
    Hao Zhang; Yang Liu; Lingen Wang; Fenglian Sun; Jiajie Fan; Mark D. Placette; Xuejun Fan; Kouchi Zhang;
    IEEE Transactions on Components, Packaging and Manufacturing Technology,
    2019.

  5. Indentation hardness, plasticity and initial creep properties of nanosilver sintered joint
    Hao Zhang; Yang Liu; Lingen Wang; Fenglian Sun; Xuejun Fan; Kouchi Zhang;
    Results in Physics,
    Volume 12, pp. 712-717, 2019.

  6. Stress analysis of pressure-assisted sintering for the double-side assembly of power module
    Yang Liu; Hao Zhang; Lingen Wang; Xuejun Fan; Kouchi Zhang; Fenglian Sun;
    Soldering and Surface Mount Technology,
    2019.

  7. General coupling model for electromigration and one-dimensional numerical solutions
    Zhen Cui; Xuejun Fan; Kouchi Zhang;
    Journal of Applied Physics,
    Volume 125, pp. 105101-1-9, 2019.

  8. Hydrolysis kinetic study of CaAlSiN3:Eu2+ red phosphor with both water immersion test and first-principles calculation
    Jiajie Fan; Ling Zhou; Zhen Cui; Shanghuan Chen; Xuejun; Kouchi Zhang;
    Journal of Luminescence,
    2019. DOI: https://doi.org/10.1016/j.jlumin.2019.116874

  9. 循环电载荷下大功率LED金引线疲劳断裂寿命预测
    Fan, J.; Li, L.; Qian, C.; Hu, A.; Fan, X.; Kouchi Zhang;
    Journal of Beijing University of Aeronautics and Astronautics,
    2019. DOI: https://doi.org/10.13700/j.bh.1001-5965.2018.0401

  10. Ultra-High Sensitive NO2 Gas Sensor Based on Tunable Polarity Transport in CVD-WS2/IGZO p-N Heterojunction
    Hongyu Tang; Yutao Li; Robert Sokolovskij; Leandro Sacco; Hongze Zheng; Huaiyu Ye; Hongyu Yu; Xuejun Fan; He Tian; Tian-Ling Ren; Kouchi Zhang;
    ACS Applied Materials and Interfaces,
    pp. 40850-40859, 2019. DOI: https://doi.org/10.1021/acsami.9b13773

  11. Tunable electronic and optical properties of the WS2/IGZO heterostructure via an external electric field and strain: A theoretical study
    Hongyu Tang; Chunjian Tan; Huiru Yang; Kai Zheng; Yutao Li; Huaiyu Ye; Xianping Chen; Xuejun Fan; Tianling Ren; Kuochi Zhang;
    Physical Chemistry Chemical Physics,
    pp. 14713-14721, 2019. DOI: https://doi.org/10.1039/c9cp02084e

  12. Effects of humidity and phosphor on silicone/phosphor composite in white light-emitting diode package
    Hoque, M. A., Bradley, R. K., Fan, J. & Fan, X.;
    Journal of Materials Science: Materials in Electronics,
    2019. DOI: https://doi.org/10.1007/s10854-019-02393-8

  13. Liquid-phase exfoliated SnS as a semiconductor coating filler to enhance corrosion protection performance
    Tang, H., Qu, Z., Wang, L., Ye, H., Zhang, G. & Fan, X.;
    Physical Chemistry Chemical Physics,
    2019. DOI: https://doi.org/10.1039/c9cp03381e

  14. Electrical and optical characterization of MoS2 thin film transistors and the effect of strain on their performances
    Zuopeng Qu; Hongyu Tang; Huaiyu Ye; Xuejun Fan; Kouchi Zhang;
    In EurosimE,
    2019.

  15. Design Considerations for a Mems Coriolis Mass Flow Sensing System
    A.C. de Oliveira; T. Schut; J. Groenesteijn; Q. Fan; R.Wiegerink; K.A.A. Makinwa;
    In MFHS,
    2019.

  16. A SPICE-based transient thermal-electronic model for LEDs
    Bo Sun; Fan, J.; Fan, X.; Kouchi Zhang;
    In 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2019. IEEE,
    2019. DOI: https://doi.org/10.1109/EuroSimE.2019.8724555

  17. Electrical and optical characterization of MoS2 thin film transistors and the effect of strain on their performances
    Qu, Z.; Hongyu Tang; Ye, H.; Fan, X.; Kouchi Zhang;
    In 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2019,
    IEEE, IEEE, 2019. DOI: https://doi.org/10.1109/EuroSimE.2019.8724549

  18. Lifetime prediction of ultraviolet light-emitting diodes with accelerated wiener degradation process
    Jing, Z.; Ibrahim, M. S.; Fan, J.; Fan, X.; Kouchi Zhang;
    In 20th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, EuroSimE 2019. IEEE,
    2019. DOI: https://doi.org/10.1109/EuroSimE.2019.8724571

  19. A MEMS Coriolis Mass Flow Sensing System with Combined Drive and Sense Interface
    A. de Oliveira; T. Schut; J. Groenesteijn; Q. Fan; R. Wiegerink; K. Makinwa;
    In Proc. IEEE Sensors,
    October 2019.

  20. Thermal Management on IGBT Power Electronic Devices and Modules
    Cheng Qian; Amir Mirza Gheytaghi; Jiajie Fan; Hongyu Tang; Bo Sun; Huaiyu Ye; Kouchi Zhang;
    IEEE Access,
    Volume 6, pp. 12868-12884, 2018.

  21. A Review on Water Vapor Pressure Model for Moisture Permeable Materials Subjected to Rapid Heating
    Liangbiao Chen; Jiang Zhou; Hsing-Wei Chu; Kouchi Zhang; Xuejun Fan;
    Applied Mechanics Reviews,
    Volume 70, Issue 2, pp. 020803-1-16, 2018.

  22. A design and qualification of LED flip Chip-on-Board module with tunable color temperatures
    Jiajie Fan; Jianwu Cao; Chaohua Yu; Cheng Qian; Xuejun Fan; Kouchi Zhang;
    Microelectronics Reliability,
    Volume 84, pp. 140-148, 2018.

  23. A new hermetic sealing method for ceramic package using nanosilver sintering technology
    Hao Zhang; Yang Liu; Lingen Wang; Jiajie Fan; Xuejun Fan; Fenglian Sun; Kouchi Zhang;
    Microelectronics Reliability,
    Volume 81, pp. 143-149, 2018.

  24. A stochastic process based reliability prediction method for LED driver
    Bo Sun; Xuejun Fan; Willem van Driel; Chengqiang Cui; Kouchi Zhang;
    Reliability Engineering and System Safety,
    Volume 178, pp. 140-146, 2018.

  25. Effect of Sintering Pressure on the Porosity and the Shear Strength of the Pressure-Assisted Silver Sintering Bonding
    Yang Liu; Hao Zhang; Lingen Wang; Xuejun Fan; Kouchi Zhang; Fenglian Sun;
    IEEE Transactions on Device and Materials Reliability,
    Volume 18, Issue 2, pp. 240-246, 2018.

  26. Effects of Voids on Mechanical and Thermal Properties of the Die Attach Solder Layer Used in High-Power LED Chip-Scale Packages
    Chengshuo Jiang; Jiajie Fan; Cheng Qian; Hao Zhang; Xuejun Fan; Weiling Guo; Kouchi Zhang;
    IEEE Transactions on Components, Packaging and Manufacturing Technology,
    Volume 8, Issue 7, pp. 1254-1262, 2018.

  27. High Selective Gas Detection for small molecules based on Germanium selenide monolayer
    Liu, L.; Yang, Q.; Wang, Z.; Ye, H.; Chen, X.; Fan, X.; Kouchi Zhang;
    Applied Surface Science,
    pp. 575-581, 2018. DOI: https://doi.org/10.1016/j.apsusc.2017.10.084

  28. Thermal Management on IGBT Power Electronic Devices and Modules
    Qian, C.; Mirza Gheytaghi, A.; Fan, J.; Hongyu Tang; Bo Sun; Ye, H.; Kouchi Zhang;
    IEEE Access,
    pp. 12868-12884, 2018. DOI: https://doi.org/10.1109/ACCESS.2018.2793300

  29. The effects of graphene stacking on the performance of methane sensor: A first-principles study on the adsorption, band gap and doping of graphene
    Yang, N.; Yang, D.; Kouchi Zhang; Chen, L.; Liu, D.; Cai, M.; Fan, X.;
    Sensors,
    2018. DOI: https://doi.org/10.3390/s18020422

  30. Solid State Lighting Reliability Part 2: Components to Systems
    van Driel, W. (ed.); Fan, X. (ed.); Zhang, G. Q. (ed.) (Ed.);
    Springer International Publishing AG, , 2018. DOI: https://doi.org/10.1007/978-3-319-58175-0_1_16

  31. Reliability Prediction of Integrated LED Lamps with Electrolytic Capacitor-Less LED Drivers
    Bo Sun; Fan, X.; van Driel, W. D. (ed.); Kouchi Zhang;
    Springer, , 2018. DOI: https://doi.org/10.1007/978-3-319-58175-0_16

  32. LED-Based Luminaire Color Shift Acceleration and Prediction
    Lu, G.; van Driel, W. D. (ed.); Fan, X.; Fan, J.; Kouchi Zhang;
    Springer, , pp. 201-219, 2018. DOI: https://doi.org/10.1007/978-3-319-58175-0_9

  33. Interfacial properties of Cu/SiO2 using a multiscale modelling approach in electronic packages
    Zhen Cui; Xianping Chen; Xuejun Fan; Kouchi Zhang;
    In 19th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE),
    2018.

  34. Capacitively-Coupled Chopper Instrumentation Amplifiers: An Overview
    Qinwen Fan; Kofi A. A. Makinwa;
    In Proc. IEEE Sensors,
    10 2018. DOI: 10.1109/ICSENS.2018.8589958

  35. A probabilistic physics-of-failure reliability assessment approach for integrated LED lamps
    Bo Sun; Jiajie Fan; Xuejun Fan; Kouchi Zhang;
    In 19th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE),
    2018.

  36. Fatigue Damage Assessment of LED Chip Scale Packages with Finite Element Simulation
    Fan, J.; Hu, A.; Pecht, M.; Chen, W.; Fan, X.; Xu, D.; Kouchi Zhang;
    In 19th International Conference on Electronic Packaging Technology, ICEPT 2018,
    IEEE, pp. pp. 1642-1648, 2018. DOI: https://doi.org/10.1109/ICEPT.2018.8480748

  37. Study of ultraviolet assisted cure mechanism of the phosphor/silicone composites used in White LEDs
    Wang, Z.; Fan, J.; Liu, J.; Hu, A.; Qian, C.; Fan, X.; Kouchi Zhang;
    In 19th International Conference on Electronic Packaging Technology, ICEPT 2018,
    IEEE, pp. 525-530, 2018. DOI: https://doi.org/10.1109/ICEPT.2018.8480566

  38. Fully Capacitive Coupled Input Choppers
    J. H. Huijsing; Q. Fan; K. A. A. Makinwa;
    Patent, US US10033369B2, July 2018. Assignee: Maxim Integrated Products Inc.

  39. Color shift acceleration on mid-power LED packages
    Guangjun Lu; Driel, W.D. van; Xuejun Fan; Jiajie Fan; Cheng Qian; Kouchi Zhang;
    Microelectronics Reliability,
    Volume 78, Issue Supplement C, pp. 294 -- 298, 11 2017. DOI: 10.1016/j.microrel.2017.09.014
    Keywords: ... Color shift, Mid-power LED package, Temperature stress, Current stress, Humidity stress.

  40. Phosphor–silicone interaction effects in high power white light emitting diode packages
    J Fan; M Zhang; X Luo; C Qian; X Fan; A Ji; Kouchi Zhang;
    Journal of Materials Science: Materials in Electronics,
    Volume 28, Issue 23, pp. 17557-17569, 2017.

  41. Overdriving reliability of chip scale packaged LEDs: Quantitatively analyzing the impact of component
    H Tang; H Ye; CKY Wong; SYY Leung; J Fan; X Chen; X Fan; Kouchi Zhang;
    Microelectronics Reliability,
    Volume 78, pp. 197-204, 2017.

  42. Photometric and Colorimetric Assessment of LED Chip Scale Packages by Using a Step-Stress Accelerated Degradation Test (SSADT) Method
    C Qian; J Fan; J Fang; C Yu; Y Ren; X Fan; Kouchi Zhang;
    Materials,
    Volume 10, Issue 10, pp. 1181, 2017.

  43. Experimental Verification and Optimization Analysis of Warpage for Panel-Level Fan-Out Package
    F Hou; T Lin; L Cao; F Liu; J Li; X Fan; Kouchi Zhang;
    IEEE Transactions on Components, Packaging and Manufacturing Technology,
    Volume 7, Issue 10, pp. 1721-1728, 2017.

  44. Modeling nonlinear moisture diffusion in inhomogeneous media
    L Chen; J Zhou; H Chu; Kouchi Zhang; X Fan;
    Microelectronics Reliability,
    Volume 75, pp. 162-170, 2017.

  45. Color shift failure prediction for phosphor-converted white LEDs by modeling features of spectral power distribution with a nonlinear filter approach
    J Fan; MG Mohamed; C Qian; X Fan; Kouchi Zhang; M Pecht;
    Materials 10,
    Volume 7, pp. 819, 2017.

  46. Thermal/luminescence characterization and degradation mechanism analysis on phosphor-converted white LED chip scale packages
    J Fan; C Yu; C Qian; X Fan; Kouchi Zhang;
    Microelectronics Reliability,
    Volume 74, pp. 179-185, 2017.

  47. Studies of the light output properties for a GaN based blue LED using an electro-optical simulation method
    C Qian; Y Li; J Fan; X Fan; J Fu; L Zhao; Kouchi Zhang;
    Microelectronics Reliability,
    Volume 74, pp. 173-178, 2017.

  48. A Reliability Prediction for Integrated LED Lamp With Electrolytic Capacitor-Free Driver
    Bo Sun; X Fan; L Li; H Ye; W van Driel; Kouchi Zhang;
    IEEE Transactions on Components and Packaging and Manufacturing Technology,
    Volume 7, Issue 7, pp. 1081-1088, 2017.

  49. A novel lifetime prediction for integrated LED lamps by electronic-thermal simulation
    Bo Sun; X Fan; H Ye; J Fan; C Qian; W van Driel; Kouchi Zhang;
    Reliability Engineering & System Safety,
    Volume 163, pp. 14-21, 2017.

  50. Numerical Thermal Analysis and Optimization of Multi-Chip LED Module Using Response Surface Methodology and Genetic Algorithm
    HY Tang; HY Ye; XP Chen; C Qian; XJ Fan; Kouchi Zhang;
    IEEE Access,
    Volume 5, pp. 16459-16468, 2017.

  51. Prediction of lumen depreciation and color shift for phosphor-converted white light-emitting diodes based on a spectral power distribution analysis method
    C Qian; J Fan; X Fan; Kouchi Zhang;
    IEEE Access,
    Volume 5, pp. 24054-24061, 2017.

  52. Numerical Thermal Analysis and Optimization of Multi-Chip LED Module Using Response Surface Methodology and Genetic Algorithm
    Hongyu Tang; Huaiyu Ye; X.P. Chen; C. Qian; X.J. Fan; Kouchi Zhang;
    IEEE Access,
    Volume 5, Issue 5, pp. 16459-16468, 2017.

  53. Capacitively-Coupled Chopper Operational Amplifiers
    Q. Fan; K.A.A. Makinwa; J.H. Huising;
    Springer, , 2017.

  54. Solid State Lighting Reliability Part 2: Components to Systems
    WD Van Driel; X Fan; Kouchi Zhang (Ed.);
    Springer, , 2017.

  55. Luminous flux modeling for high power LED automotive headlamp module
    C Yu; J Fan; C Qian; X Fan; Kouchi Zhang;
    In Electronic Packaging Technology (ICEPT), 2017 18th International Conference on,
    2017.

  56. Optimization of reflow soldering process for white LED chip-scale-packages on substrate
    C Jiang; W Guo; J Fan; C Qian; X Fan; Kouchi Zhang;
    In Electronic Packaging Technology (ICEPT), 2017 18th International Conference on,
    2017.

  57. Degradation mechanism analysis for phosphor/silicone composites aged under high temperature and high humidity condition
    X Luo; J Fan; M Zhang; C Qian; X Fan; G Zhang;
    In Electronic Packaging Technology (ICEPT), 2017 18th International Conference on,
    2017.

  58. A PoF and statistics combined reliability prediction for LED arrays in lamps
    B Sun; X Fan; J Fan; C Qian; Kouchi Zhang;
    In Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2017 18th International Conference on,
    2017.

  59. In-situ characterization of moisture absorption and hygroscopic swelling of silicone/phosphor composite film and epoxy mold compound in LED packaging
    I Khalilullah; T Reza; L Chen; AKMMH Mazumder; J Fan; C Qian; Kouchi Zhang; X Fan;
    In Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2017 18th International Conference on,
    2017.

  60. Luminescence mechanism analysis on high power tunable color temperature Chip-on-Board white LED modules
    J Fan; C Xie; C Qian; X Fan; Kouchi Zhang;
    In Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2017 18th International Conference on,
    2017.

  61. Effects of phosphor dispersion on optical characteristics of LED Chip Scale Package LEDs
    C Qian; LL Luo; JJ Fan; XQ Li; XJ Fan; Kouchi Zhang;
    In Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), 2017 18th International Conference on,
    2017.

  62. Thermal conductivity of functionalized graphene-polymer nanocomposite: A non-equilibrium molecular dynamics study
    Hongyu Tang; Huaiyu Ye; Xianping Chen; Xuejun Fan; Kouchi Zhang;
    In EurosimE,
    2017.

  63. A High-Resolution Capacitance-to-Digital Converter based on Iterative Discharging
    Hao Fan;
    MSc thesis, Delft University of Technology, October 2017.
    document

  64. PoF-Simulation Assisted Reliability Prediction for Electrolytic Capacitor in LED Drivers
    Bo Sun; Xuejun Fan; Cheng Qian; Kouchi Zhang;
    IEEE Transactions on Industrial Electronics,
    pp. 99, 2016.

  65. Degradation Mechanism Decoupling of Mid-Power White-Light LEDs by SPD Simulation
    Jianlin Huang; D. S. Golubović; S. Koh; D. Yang; X. Li; X. Fan; Kouchi Zhang;
    IEEE Transactions on Electron Devices,
    Volume 63, pp. 2807-2814, 2016.

  66. Effects of Nanostructure and Coating on the Mechanics of Carbon Nanotube Arrays
    R. H. Poelma; X. J. Fan; Z. Y. Hu; G. van Tendeloo; H.W. van Zeijl; Kouchi Zhang;
    Advanced Functional Materials,
    Volume 26, Issue 8, pp. 1233-1242, 2016.

  67. A review of small heat pipes for electronics
    Xianping Chen; Huaiyu Ye; Xuejun Fan; Tianling Ren; Kouchi Zhang;
    Applied Thermal Engineering,
    Volume 96, pp. 1-17, 2016.

  68. Colour shift and mechanism investigation on the PMMA diffuser used in LED-based luminaires
    G Lu; van Driel, WD; Xuejun Fan; Yazdan Mehr, M; Jiajie Fan; Cheng Qian; KMB Jansen; GQ Zhang;
    Optical Materials,
    Volume 54, pp. 282--287, 2016. harvest. DOI: 10.1016/j.optmat.2016.02.023
    Keywords: ... Colour shift, PMMA, Solid state lighting, LED-based luminaire, Infrared absorption spectroscopy.

  69. Advances in Low-Offset Opamps
    Q. Fan; J.H. Huising; K.A.A. Makinwa;
    Switzerland: Springer, , 2016.

  70. A Systematic Approach for Reliability Assessment of Electrolytic Capacitor-Free LED Drivers
    Bo Sun; Xuejun Fan; van Driel, Willem; Kouchi Zhang;
    United States: IEEE, , pp. 1--5, 4 2016. DOI: 10.1109/EuroSimE.2016.7463387
    Keywords: ... Reliability, MOSFET, Electrolytic Capacitor-Free LED Driver.

  71. Lumen Decay Prediction in LED Lamps
    Bo Sun; Xuejun Fan; van Driel, Willem; Thomas Michel; Jiang Zhou; Kouchi Zhang;
    United States: IEEE, , pp. 1--5, 4 2016. DOI: 10.1109/EuroSimE.2016.7463391
    Keywords: ... Reliability, LED Lamp, Lumen Decay Prediction.

  72. Reliability optimization of gold-tin eutectic die attach layer in HEMT package
    Hao Zhang; Jiajie Fan; Jing Zhang; Cheng Qian; Xuejun Fan; Fenglian Sun; Guoqi Zhang;
    In 13th China International Forum on Solid State Lighting (SSLChina),
    2016.
    document

  73. Tailoring material properties for 3D microfabrication: In-situ experimentation and multi-scale modelling
    Poelma, R. H.; X. J. Fan; E. Schlangen; H. W. v. Zeijl; Kouchi Zhang;
    In 17th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE),
    2016.
    document

  74. Thermal analysis and optimization of IGBT power electronic module based on layout model
    Hongyu Tang; Huaiyu Ye; Mingming Wang; Xuejun Fan; Kouchi Zhang;
    In ICEPT,
    2016.

  75. Fast-Settling Capacitive-Coupled Amplifiers
    J.H. Huijsing; Q. Fan; K.A.A. Makinwa; D. Fu; J. Wu; L. Zhou;
    Patent, 9,294,049, March 22 2016.

  76. Optimal Design of Life Testing for High Brightness White LEDs Using the Six Sigma DMAIC Approach
    Chuen Yung; Xuejun Fan; Kouchi Zhang; Michael Pecht;
    IEEE Transactions on Device and Materials Reliability,
    Volume 15, Issue 4, pp. 576-587, 2015.

  77. Degradation modeling of mid-power white-light LEDs by using Wiener process
    Jianlin Huang; D. S. Golubović; S. Koh; D. Yang; X. Li; X. Fan; Kouchi Zhang;
    Optics Express,
    Volume 23, pp. A966-A978, 2015.

  78. Degradation Mechanisms of Mid-power White-light LEDs under High Temperature-Humidity Conditions
    Jianlin Huang; D.S. Golubović; S. Koh; D. Yang; X. Li; X. Fan; Kouchi Zhang;
    IEEE Transactions on Device and Materials Reliability,
    Volume 15, Issue 2, pp. 220-228, 2015.

  79. Degradation of Microcellular PET Reflective Materials Used in LED-based Products
    Guangjun Lu; W.D. van Driel; Xuejun Fan; M. Yazdan Mehr; Jiajie Fan; K.M.B. Jansen; Kouchi Zhang;
    Optical Materials,
    Volume 49, pp. 79-84, 2015.

  80. Color shift investigations for LED secondary optical designs: Comparison between BPA-PC and PMMA
    Guangjun Lu; M. Yazdan Mehr; W.D. van Driel; Xuejun Fan; Jiajie Fan; K.M.B. Jansen; Kouchi Zhang;
    Optical Materials,
    Volume 45, pp. 37-41, 2015.

  81. Modelling of Carbon Nanotube Arrays with Analytical and Numerical Methods
    X. J. Fan; R. H. Poelma; L. Chen; Kouchi Zhang;
    In ASME International Mechanical Engineering Congress and Exposition,
    2015.

  82. A 110dB SNR ADC with ±30V input common-mode range and 8¿V Offset for current sensing applications
    L. Xu; B. Gönen; Q. Fan; J.H. Huijsing; K.A.A. Makinwa;
    In M Romdhane; LC Fujino; J Anderson (Ed.), Proceedings of the 2015 IEEE International Solid-State Circuits Conference,
    IEEE, pp. 89-91, 2015. Harvest Session 5.2.

  83. Tailoring the Mechanical Properties of High-Aspect-Ratio Carbon Nanotube Arrays using Amorphous Silicon Carbide Coatings
    Poelma, RH; Morana, Bruno; Vollebregt, Sten; Schlangen, Erik; van Zeijl, HW; Fan, Xuejun; Zhang, Kouchi;
    Advanced Functional Materials,
    Volume 24, Issue 36, pp. 5737-5744, 2014.
    document

  84. Correlation of activation energy between LEDs and luminaires in the lumen depreciation test
    Guangjun Lu; Yuan, C; Fan, X; Kouchi Zhang;
    In Proceedings - 15th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems,
    pp. 1-3, 2014.

  85. A lifetime prediction method for Solid State Lighting power converters based on SPICE models and finite element thermal simulations
    Bo Sun; Fan, X; Zhao, L; Yuan, CA; Koh, SW; Kouchi Zhang;
    In Proceedings - 15th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems,
    pp. 1-4, 2014.

  86. Measurement and analysis of current noise in chopper amplifiers
    J. Xu; Q. Fan; J.H. Huijsing; C. van Hoof; R.F. Yazicioglu; K.A.A. Makinwa;
    IEEE Journal of Solid State Circuits,
    Volume 48, Issue 7, pp. 1575-1584, 2013. Harvest.

  87. A multi-path chopper-stabilized capacitively coupled operational amplifier with 20V-input-common-mode range and 3μV offset
    Q. Fan; J.H. Huijsing; K.A.A. Makinwa;
    In A Chandrakasan (Ed.), Digest of Technical Papers - 2013 IEEE International Solid-State Circuits Conference (ISSCC 2013),
    IEEE, pp. 176-177, 2013. Harvest Session 10.

  88. Capacitively coupled chopper amplifiers
    Q. Fan;
    PhD thesis, Delft University of Technology, 2013. Onder embargo; staat niet in de IR van de Bibliotheek.

  89. A 21 nV/√ Hz chopper-stabilized multi-path current-feedback instrumentation amplifier with 2 μ v offset
    Q. Fan; J.H. Huijsing; K.A.A. Makinwa;
    IEEE Journal of Solid State Circuits,
    Volume 47, Issue 2, pp. 464-475, February 2012. Harvest Article number: 6112184.

  90. Solid State Lighting Reliability: Components to Systems
    W.D. van Driel; X.J. Fan;
    Springer, , Aug. 2012. DOI 10.1007/978-1-4614-3067-4.

  91. Measurement and analysis of input current noise in chopper amplifiers
    J. Xu; Q. Fan; J.H. Huijsing; C. van Hoof; R.F. Yazicioglu; K.A.A. Makinwa;
    In Y. Deval; J-B Begueret; D Belot (Ed.), Proceedings 2012 38th European Solid-State Circuit Conference,
    IEEE, pp. 81-84, 2012.

  92. A capacitively coupled chopper instrumentation amplifier with a ±30V common-mode range, 160dB CMRR and 5μV offset
    Q. Fan; J.H. Huijsing; K.A.A. Makinwa;
    In L Fujino (Ed.), Digest of Technical Papers - 2012 IEEE International Solid-state Circuits Conference,
    IEEE, pp. 374-375, 2012. Harvest Article number: 6177045.

  93. A capacitively-coupled chopper operational amplifier with 3μV Offset and outside-the-rail capability
    Q. Fan; J.H. Huijsing; K.A.A. Makinwa;
    In Y. Deval; J-B Begueret; D Belot (Ed.), Proceedings 2012 38th European Solid-State Circuit Conference,
    IEEE, pp. 73-76, 2012.

  94. Synergistic toughening of epoxy-copper interface using a thiol-based coupling layer
    C.K.Y. Wong; S.Y.Y. Leung; H. Fan; M.M.F. Yuen;
    Journal of Adhesion Science and Technology,
    Volume 25, Issue 16, pp. 2081-2099, 2011. DOI 10.1163/016942410X544875.

  95. A 1.8 µW 60 nV/√Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes
    Qinwen Fan; Fabio Sebastiano; Johan H. Huijsing; Kofi A.A. Makinwa;
    {IEEE} J. Solid-State Circuits,
    Volume 46, Issue 7, pp. 1534 - 1543, July 2011. DOI: 10.1109/JSSC.2011.2143610
    Keywords: ... CMOS integrated circuits;choppers (circuits);instrumentation amplifiers;wireless sensor networks;CMOS technology;CMRR;DC servo loop;PSRR;biopotential sensing;capacitively-coupled chopper instrumentation amplifier;chopping ripple;current 1.8 muA;electrode offset suppression;low-power precision instrumentation amplifier;noise efficiency factor;positive feedback loop;power 1.8 muW;rail-to-rail input common-mode range;ripple reduction loop;size 65 nm;voltage 1 V;wireless sensor nodes;Capacitors;Choppers;Impedance;Noise;Sensors;Topology;Wireless sensor networks;Bio-signal sensing;chopping;high power efficiency;low offset;low power;precision amplifier;wireless sensor nodes.

    Abstract: ... This paper presents a low-power precision instrumentation amplifier intended for use in wireless sensor nodes. It employs a capacitively-coupled chopper topology to achieve a rail-to-rail input common-mode range as well as high power efficiency. A positive feedback loop is employed to boost its input impedance, while a ripple reduction loop suppresses the chopping ripple. To facilitate bio-potential sensing, an optional DC servo loop may be employed to suppress electrode offset. The IA achieves 1 µV offset, 0.16% gain inaccuracy, 134 dB CMRR, 120 dB PSRR and a noise efficiency factor of 3.3. The instrumentation amplifier was implemented in a 65 nm CMOS technology. It occupies only 0.1 mm² chip area (0.2 mm² with the DC servo loop) and consumes 1.8 µA current (2.1 µA with the DC servo loop) from a 1 V supply.

  96. Input characteristics of a chopped multi-path current feedback instrumentation amplifier
    Q. Fan; J.H. Huijsing; K.A.A. Makinwa;
    In {De Venuto}, D; L Benini (Ed.), 4th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI),
    IEEE, pp. 61-66, 2011.

  97. LPCVD amorphous SiCx for freestanding electron transparent windows
    B. Morana; J.F. Creemer; F. Santagata; C.C. Fan; H.T.M. Pham; G. Pandraud; F.D. Tichelaar; P.M. Sarro;
    In Y. Suzuki; Man Wong (Ed.), Proceedings of IEEE MEMS 2010 Conference,
    Wanchai, Hong Kong, IEEE, pp. 572-575), 2010.

  98. Molecular design of reliable epoxy-copper interface using molecular dynamic simulation
    C. K. Y. Wong; H. Fan; G. Zhang; M. Yuen;
    In Proceedings of International Conference of Thermal, Mechanical & Multi-Physics Simulation, and Experiments Microelectronics and Microsystems (EuroSimE),
    France, pp. 1-7, 2010.

  99. A 21nV/¿Hz chopper-stabilized multipath current-feedback instrumentation amplifier with 2µV offset
    Q. Fan; J.H. Huijsing; K.A.A. Makinwa;
    In H Hidaka; B. Nauta (Ed.), Digest of Technical Papers - 2010 IEEE International Solid-State Circuits Conference,
    IEEE, pp. 80-81, 2010.

  100. A 1.8µW 1-µV-offset capacitively-coupled chopper instrumentation amplifier in 65nm CMOS
    Qinwen Fan; Fabio Sebastiano; Johan H. Huijsing; Kofi A.A. Makinwa;
    In Proc. European Solid-State Circuits Conference,
    Sevilla, Spain, pp. 170 - 173, September14--16 2010. DOI: 10.1109/ESSCIRC.2010.5619902
    Keywords: ... CMOS integrated circuits;instrumentation amplifiers;CMOS;input impedance;noise efficiency factor;positive feedback loop;precision capacitively-coupled chopper instrumentation amplifier;rail-to-rail DC common-mode input range;ripple reduction loop;size 65 nm;Accuracy;Choppers;Impedance;Instruments;Noise;Resistors;Topology.

    Abstract: ... This paper describes a precision capacitively-coupled chopper instrumentation amplifier (CCIA). It achieves 1µV offset, 134dB CMRR, 120dB PSRR, 0.16% gain accuracy and a noise efficiency factor (NEF) of 3.1, which is more than 3x better than state-of-the-art. It has a rail-to-rail DC common-mode (CM) input range. Furthermore, a positive feedback loop (PFL) is used to boost the input impedance, and a ripple reduction loop (RRL) is used to reduce the ripple associated with chopping. The CCIA occupies only 0.1mm² in a 65nm CMOS technology. It can operate from a 1V supply, from which it draws only 1.8µA.

  101. A 2.1 µW Area-Efficient Capacitively-Coupled Chopper Instrumentation Amplifier for ECG Applications in 65 nm CMOS
    Qinwen Fan; Fabio Sebastiano; Johan H. Huijsing; Kofi A.A. Makinwa;
    In Proc. Asian Solid-State Circuits Conference,
    Beijing, China, pp. 1 - 4, November8--10 2010. DOI: 10.1109/ASSCC.2010.5716624
    Keywords: ... CMOS integrated circuits;amplifiers;biomedical electrodes;choppers (circuits);electrocardiography;CMOS technology;DC servo loop;ECG application;area efficient chopper instrumentation amplifier;capacitive feedback network;capacitively coupled chopper instrumentation amplifier;electrocardiography;electrode-tissue interface;power 2.1 muW;switched capacitor integrator;Choppers;DSL;Earth Observing System;Electrocardiography;Impedance;Instruments;Noise.

    Abstract: ... This paper describes a capacitively-coupled chopper instrumentation amplifier for use in electrocardiography (ECG). The amplifier's gain is accurately defined by a capacitive feedback network, while a DC servo loop rejects the DC offset generated by the electrode-tissue interface. The high-pass corner frequency established by the servo loop is realized by an area-efficient switched-capacitor integrator. Additional feedback loops are employed to boost the amplifier's input-impedance to 80 MΩ and to suppress the chopper ripple. Implemented in a 65 nm CMOS technology, the amplifier draws 2.1 µA from a 1 V supply and occupies 0.2 mm².

  102. Very thin SiC membranes for micromachined vacuum sensors
    H.T.M. Pham; C. Fan; G. Pandraud; J.F. Creemer; N.M. van der Pers; P. Visser; C. Kwakernaak;
    In Proceedings of IEEE sensors 2008,
    Lecce, Italy, pp. 1143-1146, 2009.

  103. Interfacial Adhesion Study for SAM Induced Covalent Bonded Copper-EMC Interface by Molecular Dynamics Simulation
    C. K. Y. Wong; H. Fan; M. M. F. Yuen;
    IEEE Transactions on Components, Packaging and Manufacturing Technology, Part A: Packaging Technologies,
    Volume 31, pp. 297-308, 2008.

  104. Very thin SiC membranes for micromachines vacuum sensors
    H.T.M. Pham; C. Fan; G. Pandraud; J.F. Creemer; N.M. van der Pers; P. Visser; K. Kwakernaak; P.M. Sarro;
    In s.n. (Ed.), Proceedings of IEEE sensors 2008,
    IEEE Sensors, pp. 1143-1146, 2008.

  105. A chopper instrumentation amplifier for biopotential applications
    Q. Fan;
    PhD thesis, Delft University of Technology, 2008.

  106. Investigation of adhesion properties of Cu-EMC interface by molecular dynamic simulation
    C. K. Y. Wong; H. Fan; M. M. F. Yuen;
    In Proceedings of the 6th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments Micro-Electronics and Micro-Systems-EuroSimE 2005,
    Berlin, pp. 31-35, 2005.
    document

BibTeX support