news

NWO Take-Off Grant for organ-on-a-chip development

PhD candidates Cinzia Silvestri, William Quiros Solano and Nikolas Gaio (start-up Biond ) and Ronald Dekker have successfully applied for a NWO Take-Off Grant (Phase 1) for organ-on-a-chip development.

"In vitro screening is a fundamental step during drug development. A crucial need of pharmaceutical companies is to assess drug safety at the early stage of the pipeline to identify and eliminate compounds that exhibit a potential for adverse drug reactions. However, at least 462 medicinal products were withdrawn from the market between 1953 and 2014, with consequences for patients, regulatory systems and pharma companies. Therefore, the traditional screening approach, based on in vitro static cell culture assays, is considered not predictive enough. This limitation has increased the interest in more realistic models: Organs-on-chips (OOCs). Organ-on-Chips are micro-fluidics devices designed to simulate in vivo human physiology by promoting cell and tissue growth in vitro.

BIOND developed an innovative microfluidic system for OOCs that provides a dynamic micro-environment suited to highly predictive cell culture models, that allows real-time recording of a comprehensive set of data of the cell culture with a user-friendly interface. In particular, this project will aim at improving the user interface focusing on three main aspects: Usability, Functionality and Versatility"


Winner Internet of Things Pitch: Sjoerd Bosma

On July 5th 2017 The Micro-electronics organized an Internet of Things pitch session in which staff and students could present an idea in two minutes. Eventually ten ideas were pitched followed by the yearly summer drinks.

Winner of the pitches is master student Sjoerd Bosma. With his pitch Future Intelligent & Autonomous System for Coordinated Open parking Spaces (FIASCOS) he thought of a solution to avoid endlessly driving around in circles trying to find a parking spot in the inner cities. He suggests putting free parking spots in navigation systems. Energy harvesting technologies can be used for that; little sensors that harvest their own energy from their surroundings. These sensors can be built in e.g. little speed bumps in front of each spot. In that way the sensor can know if there is a car parked in the spot and can pass on that information to the navigation system.

Sjoerd admitts that he is probably not the first persons that thinks of connecting parking spots to navigation systems. Probably people are working on simular solutions, but with expensive wiring and infrared camera's. The little energy harvesting sensors would be much cheaper and maintenance free.

It doesn't have that much to do with Sjoerds master thesis. He will graduate in the Terra Hertz Sensing group in August where he worked on antennas and optics for sub-milimeter astronomy.

More ...


BSc Group at ELCA awarded with IEEE Best High Tech Start-up Business Plan

From Left-to-Right: Marco Pelk, Alexander Louwerse, Jun Feng

At the Bachelor Electrical Engineering Graduation Grand Finale held on 7 July 2017, the six-student group formed by Bilal Bouazzata, Laurens Buijs, Jun Feng, Martijn Hoogelander, Alexander Louwerse and Niels van der Kolk received the IEEE Best High Tech Start-up Business Plan award from Koen Bertels for their business plan on the topic of their graduation project at ELCA.

The group was supervised by Marco Pelk and Morteza Alavi while the project was proposed by Leo de Vreede.

During this project, the group accomplished a proof of concept for a promising "interpolating-supply" power amplifier efficiency enhancement technique, laying a foundation for future research.


Five papers Michiel Pertijs' group on IEEE International Ultrasonics Symposium (IUS)

At the coming IEEE International Ultrasonics Symposium (IUS), five papers will be presented that are (co)authored by the Ultrasound ASICs group of Michiel Pertijs. IUS is IEEE’s primary forum for medical and industrial ultrasound research, and will be held in Washington in September. The 5 papers describe advanced combinations of integrated circuits and ultrasound transducers to enable next-generation miniature 3D ultrasound probes, including an endoscope-based probe for echocardiography, a catheter-based probe for intra-vascular imaging, and a probe for imaging of the carotid artery. One of the papers, co-authored by Chao Chen and Zhao Chen, has been selected as a finalist for the Student Paper Competition. Moreover, Chao has been awarded a Student Travel Grant to present his work at the conference.

More ...


Samprajani Rout's ISCAS 2017 paper among top papers of the conference

ISCAS 2017 paper No. 1849, entitled “Structured Electronic Design of High-Pass ΣΔ Converters and Their Application to Cardiac Signal Acquisition” has been selected as one of the top contributions to the conference and an extended version of the paper has been invited for the TBioCAS Special Issue on ISCAS 2017. Authors of the paper are Samprajani Rout and Wouter Serdijn (Section Bioelectronics)

Abstract of the paper:

Achieving an accurate sub-Hz high-pass (HP) cutoff frequency and simultaneously a high accuracy of the transfer function is a challenge in the implementation of analog-to-digital converters for biomedical ExG signals. A structured electronic design approach based on state-space forms is proposed to develop HP modulators targeting high accuracy of the HP cutoff frequency and good linearity. Intermediate transfer functions are mathematically evaluated to compare the proposed HP Sigma-Delta topologies with respect to dynamic range. Finally, to illustrate the design method, an orthonormal HP Sigma-Delta modulator is designed to be implemented in 0.18 um technology which achieves a linearity of 12 bits.


NWO Take-Off Grant (Phase 1) for Ide Swager and Menno Gravemaker (Momo Medical) and Wouter Serdijn (Section Bioelectronics)

Pressure ulcer wounds are a global problem in healthcare institutions, still. These wounds cause a lot of pain and discomfort for the patient, a high workload for the caregivers and cost a lot of money, in the EU alone already more than 15 billion Euros each year. TU Delft spin-off Momo Medical has developed a smart sensor bed sensor that solves this problem.

In this project, the following steps are taken to test the smart bed sensor in practice, in the Living Lab of the Reinier de Graaf Hospital. In addition, further commercial development is done by approaching more potential customers and understanding the cost structure of the product better when scaling up.

More ...


Vasiliki Giagka elected member of the IEEE Biomedical and Life Science Circuits and SystemsTechnical Committee

At its annual meeting during the International Symposium on Circuits and Systems, Vasiliki Giagka (Section Bioelectronics) was elected member of the IEEE Biomedical and Lifescience Circuits and Systems Technical Committee.

More ...


ABN Amro gaat betalen met je ring mogelijk maken

ABN Amro claimt de eerste bank ter wereld te zijn die het mogelijk maakt om met een ring te betalen in plaats van met een pinpas. De bank experimenteert daar momenteel mee met een selecte groep van klanten. Hoeveel mensen met de ring willen betalen, is nog maar de vraag. Volgens hoogleraar bio-elektronica Wouter Serdijn hangt dat ook af van wat de ring nog meer voor functies krijgt. Item van de NOS, ook verschenen bij Finanzen en PowNed, d. 22 juni 2017.

More ...


NWO Demonstrator Grant awarded to Wouter Serdijn (Bioelectronics) and Cees-Jeroen Bes (in-Holland)

We recently developed a radically new technique, coined "additive companding", which solves important technological limitations of current neural recording systems. The technology has been patented, tested in the lab as proof of concept and is now ready to be developed further into a prototype. The foreseen prototype will allow for continuous and complete monitoring of neural activity, offers better performance and consumes drastically less volume (<400 µm x 400 µm x 400 µm) and energy (<<1 mW) than neural monitoring systems that currently exist or are under development. Clinically, the continuous and complete neural monitoring will offer new insights into the exact workings of nerve and brain tissue and it becomes possible to take the first step into the development of active medical implants that adjust themselves to the therapeutical needs of the patient without subjective measures. This, ultimately, enhances the health-related quality of life of patients with nerve and/or brain disorders and allows for a better treatment of a larger variety of nerve and brain disorders.


In de Zweedse trein kun je inchecken met een onderhuidse chip

Alleen uw hand even omhooghouden, waarna de treinconducteur die met zijn smartphone aanraakt en 'bliep': u bent ingecheckt. In Nederland is dit nog toekomstmuziek, maar in Zweden beleven treinreizigers momenteel de wereldwijde primeur in het openbaar vervoer: inchecken met een onder de huid aangebrachte microchip. Artikel in De Volkskrant en in De Morgen, d. 17 juni 2017, met een bijdrage van Wouter Serdijn

More ...


Best Student Paper Award at the RIFC Symposium for Milad Mehrpoo (ELCA Group)

At the 2017 RFIC Symposium that was held on 4-6 June 2017 in Honolulu, Hawaii, USA, Milad Mehrpoo received the RFIC 2017 Best Student Paper Awards. The award was for the design of "A Wideband Linear Direct Digital RF Modulator Using Harmonic Rejection and I/Q Interleaving RF DACs". Mohsen Hashemi and Yiyu Shen were his co-authors while Leo de Vreede and Morteza Alavi were his advisors. This work was supported by EU Catrene project EAST and Dutch STW project SEEDCom.


This is how we will become bionic super humans

Tech companies want to fix spinal cord injuries and make enhanced super humans that communicate through telepathy, or so Prof. Wouter Serdijn heard at a meeting this spring in Washington. There are some snags though.

More ...


Kick off meeting Integrated Cooperative Automated Vehicles (i-CAVE)

On June 6 and 7, 2017 the two days kick off meeting of the i-Cave project took place at the TU Eindhoven.

This NWO research program addresses current transportation challenges regarding throughput and safety with an integrated approach to automated and cooperative driving. In i-CAVE, a cooperative dual mode automated transport system is researched and designed, consisting of dual mode vehicles which can be driven automatically and manually to allow maximum flexibility. The program integrates technological roadmaps for automated and cooperative driving, accelerating the development of novel transportation systems addressing today's and future mobility demands.

Quick Facts of iCAVE
Number of Participating Organizations = 5

  • Eindhoven University of Technology, Eindhoven
  • University of Twente, Enschede
  • Delft University of Technology, Delft
  • University of Amsterdam
  • Radboud University, Nijmegen
i-CAVE focuses on 7 research lines:
  1. Sensing
  2. System control integration
  3. Dynamic fleet management
  4. Communication
  5. Human factors
  6. Functional safety
  7. Living-lab evaluation
Contribution of Microwave Sensing, Signals and Systems (MS3)
Prof. DSc. Alexander Yarovoy, Dr. Faruk Uysal and PhD. candidate Nannan Chen, conduct research under the Communication research line of i-CAVE project in close collaboration with Information and Communication Theory (ICT) Lab of Eindhoven University of Technology (TU/e). The research of group aims to implement RADAR-based communication, allowing advanced driver assistance systems to be used as both sensors and communication devices, realizing a more robust and synergetic approach to sensing and communication for safe high-speed automated and cooperative driving. To address interaction capabilities between vehicles and environment, we focus on radar processing methods with signals that allow for communication functionality. MS3 is highly cooperating with NXP on this.

Other Participants from TU Delft:
In addition to the MS3 group in EWI, Rudy Negenborn and Gabriel Lodewijks of the department of Maritime and Transportation Technology in the faculty 3mE will be conducting extensive research into dynamic fleet management of groups of automated vehicles.


Best student paper award VLSI Symposium for PhD Bahman Yousefzadeh

At the 2017 VLSI Symposium, Bahman Yousefzadeh received the 2016 best student paper award! The award was for the design of a CMOS temperature sensor with record-breaking inaccuracy of less than +/-0.06 °C over a wide temperature range (-70 °C to 125 °C). Saleh Heidary and Kofi Makinwa were co-authors, and the work was done in collaboration with NXP Semiconductors. The resulting journal paper can be found in the here.


Best Student Presentation Award for Jamal Amini

At the 2017 Symposium on Information Theory and Signal Processing (Delft, 11-12 May), organized by the IEEE Benelux Chapter, Jamal Amini received a best student presentation award. Congratulations!

More ...


BEST PAPER AWARD for DANIELE CAVALLO at EuCAP 2017

Daniele Cavallo received the "Best Paper Award in Electromagnetics and Antenna Theory" at the European Conference on Antennas and Propagation (EuCAP 2017), held in Paris, France, on 19-24 March 2017.

The paper awarded is titled "Analysis of Artificial Dielectrics Composed of Non-Aligned Layers," and was coauthored with the master student Cantika Felita.

EuCAP is one of the major international conferences in the field of antennas and propagation, with about 1300 attendees from academia, research centers and industry and 950 papers presented.