Zhong Tang

Publications

  1. A PNP-Based Temperature Sensor With Continuous-Time Readout and ±0.1 ∘C (3σ) Inaccuracy From -55 ∘C to 125 ∘C
    Toth, Nandor G.; Tang, Zhong; Someya, Teruki; Pan, Sining; Makinwa, Kofi A. A.;
    IEEE Journal of Solid-State Circuits,
    Volume 60, Issue 2, pp. 593-602, 2025. DOI: 10.1109/JSSC.2024.3402131
    Keywords: ... Temperature sensors;Resistors;Energy efficiency;Instruments;Temperature dependence;Modulation;Energy resolution;Bitstream-controlled (BSC) dynamic-element-matching (DEM);continuous-time (CT) ΔΣ-modulator;current-mode readout;PNP-based temperature sensor;resistor ratio self-calibration.

  2. A 0.8-V BJT-Based Temperature Sensor With an Inaccuracy of $\pm$ 0.4 $^\circ$ C (3 $\sigma$ ) From $-$ 40 $^\circ$ C to 125 $^\circ$ C in 22-nm CMOS
    Tang, Zhong; Yu, Xiao-Peng; Makinwa, Kofi A. A.; Tan, Nick Nianxiong;
    IEEE Journal of Solid-State Circuits,
    pp. 1-9, 2025. DOI: 10.1109/JSSC.2024.3523482
    Keywords: ... Temperature sensors;Capacitors;Sensors;Voltage;Charge pumps;Switches;Voltage control;Accuracy;Transistors;Discharges (electric); $\Delta\Sigma$ modulator;capacitively biased (CB) bipolar junction transistor (BJT);charge pump;inverter-based amplifier;temperature sensor;temperature to digital converter.

  3. A PNP-Based Temperature Sensor With Continuous-Time Readout and ± 0.1 °C (3σ) Inaccuracy From -55 °C to 125 °C
    Toth, Nandor G.; Tang, Zhong; Someya, Teruki; Pan, Sining; Makinwa, Kofi A. A.;
    IEEE Journal of Solid-State Circuits,
    pp. 1-10, 2024. DOI: 10.1109/JSSC.2024.3402131
    Keywords: ... Temperature sensors; Resistors; Energy efficiency; Instruments; Temperature dependence; Modulation; Energy resolution;Bitstream-controlled (BSC) dynamic-element-matching (DEM);continuous-time (CT) ΔΣ-modulator; current-mode readout; PNP-based temperature sensor; resistor ratio self-calibration.

    Abstract: ... This article describes a PNP-based temperature sensor that achieves both high energy efficiency and accuracy. Two resistors convert the CTAT and PTAT voltages generated by a PNP-based front-end into two currents whose ratio is then digitized by a continuous-time (CT) ΔΣ-modulator. Chopping and dynamic-element-matching (DEM) are used to mitigate the effects of component mismatch and 1/f noise, while the spread in VBE and in the ratio of the two resistors is digitally trimmed at room temperature (RT). Fabricated in a 0.18 μm CMOS process, the sensor occupies 0.12 mm2, and draws 9.5 μA from a supply voltage ranging from 1.7 to 2.2 V. Measurements on 40 samples from one batch show that it achieves an inaccuracy of ±0.1 °C (3σ ) from −55 °C to 125 °C, and a commensurate supply sensitivity of only 0.01 °C/V. Furthermore, it achieves high energy efficiency, with a resolution Figure of Merit (FoM) of 0.85 pJ·K2.

  4. A Bias-Flip Rectifier With Duty-Cycle-Based MPPT for Piezoelectric Energy Harvesting
    Yue, Xinling; Javvaji, Sundeep; Tang, Zhong; Makinwa, Kofi A. A.; Du, Sijun;
    IEEE Journal of Solid-State Circuits,
    Volume 59, Issue 6, pp. 1771-1781, 2024. DOI: 10.1109/JSSC.2023.3313733
    Keywords: ... Rectifiers;Maximum power point trackers;Power generation;Vibrations;Voltage measurement;Energy harvesting;Capacitors;Bias-flip rectifier;duty-cycle-based (DCB);energy harvesting;maximum power point tracking (MPPT);piezoelectric energy harvester;synchronized switch harvesting on inductor (SSHI).

  5. A 14-b BW /Power Scalable Sensor Interface With a Dynamic Bandgap Reference
    Tang, Zhong; Liu, Yuyan; Chen, Pengpeng; Wang, Haining; Yu, Xiao-Peng; Makinwa, Kofi A. A.; Nianxiong Tan, Nick;
    IEEE Journal of Solid-State Circuits,
    Volume 59, Issue 12, pp. 4077-4087, 2024. DOI: 10.1109/JSSC.2024.3471820
    Keywords: ... Capacitors;Noise;Discharges (electric);Photonic band gap;Modulation;Temperature sensors;Time-domain analysis;Temperature measurement;Turning;Inverters; $\Delta \Sigma $ ADC;analog-to-digital converter;bandgap reference (BGR);capacitively biased (CB) BJT;floating inverter amplifier (FIA);poly-phase filter (PPF).

  6. A Sub-1 V Capacitively Biased BJT-Based Temperature Sensor With an Inaccuracy of ±0.15°C (3σ) from −55°C to 125°C
    Tang, Zhong; Pan, Sining; Grubor, Miloš; Makinwa, Kofi A. A.;
    IEEE Journal of Solid-State Circuits,
    pp. 1-9, 2023. DOI: 10.1109/JSSC.2023.3308554

  7. A Bias-Flip Rectifier With Duty-Cycle-Based MPPT for Piezoelectric Energy Harvesting
    Yue, Xinling; Javvaji, Sundeep; Tang, Zhong; Makinwa, Kofi A. A.; Du, Sijun;
    IEEE Journal of Solid-State Circuits,
    pp. 1-11, 2023. DOI: 10.1109/JSSC.2023.3313733

  8. A Sub-1 V Capacitively Biased BJT-Based Temperature Sensor With an Inaccuracy of ±0.15 °C (3σ) From—55 °C to 125 °C
    Tang, Zhong; Pan, Sining; Grubor, Miloš; Makinwa, Kofi A. A.;
    IEEE Journal of Solid-State Circuits,
    Volume 58, Issue 12, pp. 3433-3441, 2023. DOI: 10.1109/JSSC.2023.3308554
    Keywords: ... Temperature sensors;Voltage;Switches;Energy efficiency;Capacitors;Switching circuits;Mathematics;Inverters;Converters;Δ Σ ADC;capacitively biased bipolar junction transistor (BJT);inverter-based amplifier;temperature sensor;temperature to digital converter.

  9. A BJT-Based Temperature Sensor with±0.1°C (3σ) Inaccuracy from -55°C to 125°C and a 0.85pJ.K2 Resolution FoM Using Continuous-Time Readout
    Toth, Nandor G.; Tang, Zhong; Someya, Teruki; Pan, Sining; Makinwa, Kofi A. A.;
    In 2023 IEEE International Solid-State Circuits Conference (ISSCC),
    pp. 358-360, 2023. DOI: 10.1109/ISSCC42615.2023.10067457

  10. A Sub-1V 810nW Capacitively-Biased BJT-Based Temperature Sensor with an Inaccuracy of ±0.15°C (3σ) from −55°C to 125°C
    Tang, Zhong; Pan, Sining; Makinwa, Kofi A. A.;
    In 2023 IEEE International Solid-State Circuits Conference (ISSCC),
    pp. 22-24, 2023. DOI: 10.1109/ISSCC42615.2023.10067695

  11. A 40A Shunt-Based Current Sensor with ±0.2% Gain Error from −40°C to 125°C and Self-Calibration
    Tang, Zhong; Toth, Nandor G.; Zamparette, Roger; Nezuka, Tomohiro; Furuta, Yoshikazu; Makinwa, Kofi A. A.;
    In 2023 IEEE International Solid-State Circuits Conference (ISSCC),
    pp. 348-350, 2023. DOI: 10.1109/ISSCC42615.2023.10067304

  12. A Versatile ±25-A Shunt-Based Current Sensor With ±0.25% Gain Error From −40 °C to 85 °C
    Tang, Zhong; Zamparette, Roger; Furuta, Yoshikazu; Nezuka, Tomohiro; Makinwa, Kofi A. A.;
    IEEE Journal of Solid-State Circuits,
    Volume 57, Issue 12, pp. 3716-3725, 2022. DOI: 10.1109/JSSC.2022.3204520

  13. A ±25A Versatile Shunt-Based Current Sensor with 10kHz Bandwidth and ±0.25% Gain Error from -40°C to 85°C Using 2-Current Calibration
    Tang, Zhong; Zamparette, Roger; Furuta, Yoshikazu; Nezuka, Tomohiro; Makinwa, Kofi A. A.;
    In 2022 IEEE International Solid-State Circuits Conference (ISSCC),
    pp. 66-68, 2022. DOI: 10.1109/ISSCC42614.2022.9731777

BibTeX support