Sten Vollebregt
Publications
- A Fully Integrated Sequential Synchronized Switch Harvesting on Capacitors Rectifier Based on Split-Electrode for Piezoelectric Energy Harvesting
Xinling Yue; Jiarui Mo; Zhiyuan Chen; Sten Vollebregt; Guoqi Zhang; Sijun Du;
IEEE Transactions on Power Electronics,
Volume 39, Issue 6, pp. 7643-7653, 2024. DOI: 10.1109/TPEL.2024.3369728 - Measuring residual stresses in individual on-chip interconnects using synchrotron
nanodiffraction
Yaqian Zhang; Leiming Du; Olof Bäcke; Sebastian Kalbfleisch; Guoqi Zhang; Sten Vollebregt; Magnus Hörnqvist Colliander;
Applied Physics Letters,
Volume 124, pp. 083501-1-6, 2024. DOI: 10.1063/5.0192672 - Surface modification of multilayer graphene neural electrodes by local printing of platinum nanoparticles using spark ablation
Nasim Bakhshaee Babaroud; Samantha J. Rice; Maria Camarena Perez; Wouter A. Serdijn; Sten Vollebregt; Vasiliki Giagka;
Nanoscale,
Volume 16, pp. 3549-3559, 2024. DOI: 10.1039/D3NR05523J - Highly-sensitive wafer-scale transfer-free graphene MEMS condenser microphones
Roberto Pezone; Sebastian Anzinger; Gabriele Baglioni; Hutomo Suryo Wasisto; Lina Sarro; Peter Steeneken; Sten Vollebregt;
Microsystems & Nanoengineering,
Volume 10, Issue 27, pp. 1-9, 2024. DOI: 10.1038/s41378-024-00656-x - Surface modification of multilayer graphene electrodes by local printing of platinum nanoparticles using spark ablation for neural interfacing
Nasim Bakhshaee Babaroud; Samantha June Rice; Maria Camarena Perez; Wouter A. Serdijn; Sten Vollebregt; Vasiliki Giagka;
Nanoscale,
Volume 16, Issue 7, pp. 3549-3559, Jan. 2024. DOI: 10.1039/D3NR05523J
document - Effect of air-loading on the performance limits of graphene microphones
R. Pezone; G. Baglioni; C. Van Ruiten; S. Anzinger; H. S. Wasisto; P. M. Sarro; P. G. Steeneken; S. Vollebregt;
Applied Physics Letters,
Volume 124, Issue 12, 2024. DOI: 10.1063/5.0191939 - A high aspect ratio surface micromachined accelerometer based on a SiC-CNT composite material
Jiarui Mo; Shreyas Shankar; Roberto Pezone; Guoqi Zhang; Sten Vollebregt;
Microsystems & Nanoengineering,
Volume 10, Issue 42, 2024. DOI: 10.1038/s41378-024-00672-x - An Analog to Digital Converter in a SiC CMOS Technology for High-temperature Applications
Jiarui Mo; Yunfan Niu; Alexander May; Mathias Rommel; Chiara Rossi; Joost Romijn; Guoqi Zhang; Sten Vollebregt;
Applied Physics Letters,
Volume 124, Issue 15, 2024. DOI: 10.1063/5.0195013 - Origin of the mm-submm loss in deposited dielectrics
B.T. Buijtendorp; A. Endo; W. Jellema; K. Karatsu; K. Kouwenhoven; D. Lamers; A. J. van der Linden; K. Rostem; M. Veen; E. J. Wollack; J. J. A. Baselmans; S. Vollebregt;
arXiv:2405.13688,
2024.
document - Quantifying stress distribution in ultra-large graphene drums through modeshape imaging
Ali Sarafraz; Hanqing Liu; Katarina Cvetanović; Marko Spasenović; Sten Vollebregt; Tomás Manzaneque Garcia; Peter G. Steeneken; Farbod Alijani; Gerard J. Verbiest;
npj 2D materials and applications,
Volume 8, Issue 45, 2024. DOI: 10.1038/s41699-024-00485-6 - Temperature Sensing Elements for Harsh Environments in a 4H-SiC CMOS Technology
Jiarui Mo; Jinglin Li; Alexander May; Mathias Rommel; Sten Vollebregt; Guoqi Zhang;
IEEE Transactions on Electron Devices,
Volume 71, Issue 10, pp. 5881-5887, 2024. DOI: 10.1109/TED.2024.3450828 - Investigating Mechanical Properties of Silicon Carbide Coated Carbon Nanotube Composite at Elevated Temperatures
Jiarui Mo; Gerald J.K. Schaffar; Leiming Du; Verena Maier-Kiener; Daniel Kiener; Sten Vollebregt; Guoqi Zhang;
In IEEE 37th Intl. Conf. on Micro Electro Mechanical Systems (MEMS2024),
2024. DOI: 10.1109/MEMS58180.2024.10439455 - A SiC-carbon nanotube composite for MEMS
Sten Vollebregt;
In Sensor Decade,
2024. Invited keynote. - Transfer-free Fabrication and Characterisation of Transparent Multilayer CVD Graphene MEAs for
in-vitro Optogenetic Applications
Gonzalo León Gonzáles; Shanliang Deng; Sten Vollebregt; Vasiliki Giagka;
In Proc. IEEE MeMeA 2024,
2024.
document - In Situ Analysis of Copper Microstructures in Electromigration Using SEM-EBSD Techniques
Yaqian Zhang; Yixin Yan; Sten Vollebregt; GuoQi Zhang;
In Proceedings - IEEE 74th Electronic Components and Technology Conference (ECTC),
pp. 1317-1321, 2024. DOI: 10.1109/ECTC51529.2024.00214 - Transfer-free Fabrication and Characterisation of Transparent Multilayer CVD Graphene MEAs for in-vitro Optogenetic Applications
Gonzalo León González; Shanliang Deng; Sten Vollebregt; Vasiliki Giagka;
In Proc. of IEEE Medical Measurements & Applications conference,
2024. DOI: 10.1109/MeMeA60663.2024.10596734 - Origin of mm-submm loss in deposited dielectrics for superconducting astronomical instrumentation
Bruno T. Buijtendorp; Akira Endo; Willem Jellema; Kenichi Karatsu; Ton van der Linden; Dimitry Lamers; Karwan Rostem; Edward J. Wollack; Jochem J. A. Baselmans; Sten Vollebregt; Robert Huisman; Martijn Veen;
In Proceedings Volume PC13102, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XII,
2024. DOI: 10.1117/12.3020071 - Improvement of on-chip terahertz spectroscopy by nanometer-scale control of electron-beam lithography
Leon Olde Scholtenhuis; Kenichi Karatsu; David J. Thoen; Louis H. Marting; Jochem J. A. Baselmans; Sten Vollebregt; Akira Endo;
In Proceedings Volume 13092, Space Telescopes and Instrumentation 2024: Optical, Infrared, and Millimeter Wave,
2024. DOI: 10.1117/12.3017946 - The Impact of Outgassing of Molding Compound on Graphene for Gas Sensing
Tiance An; Mudassir Husain; Sten Vollebregt;
In Proc. of IEEE Sensors,
2024. - Optimization of multilayer graphene-based gas sensors by ultraviolet photoactivation
Álvaro Peña; Daniel Matatagui; Filiberto Ricciardella; Leandro Sacco; Sten Vollebregt; Daniel Otero; JesúsLópez-Sánchez; Pilar Marína; M.Carmen Horrillo;
Applied Surface Science,
Volume 610, pp. 155393, 2023. DOI: 10.1016/j.apsusc.2022.155393 - Overview of Engineering Carbon Nanomaterials such as Carbon Nanotubes (CNTs), Carbon Nanofibers (CNFs), Graphene and Nanodiamonds and Other Carbon Allotropes inside Porous Anodic Alumina (PAA) Templates
Leandro Sacco; Sten Vollebregt;
MDPI Nanomaterials,
Volume 13, Issue 2, pp. 260, 2023. DOI: 10.3390/nano13020260 - Transient thermal measurement on nano-metallic sintered die-attach joints using a thermal test chip
R. Sattari; Dong Hu; Xu Liu; H. van Zeijl; S. Vollebregt; GuoQi Zhang;
Applied Thermal Engineering,
Volume 221, pp. 119503, 2023. DOI: 10.1016/j.applthermaleng.2022.119503 - Coupling Model of Electromigration and Experimental Verification – Part I: Effect of Atomic Concentration Gradient
Zhen Cui; Xuejun Fan; Yaqian Zhang; Sten Vollebregt; Jiajie Fan; Guoqi Zhang;
Journal of the Mechanics and Physics of Solids,
Volume 174, pp. 105257, 2023. DOI: 10.1016/j.jmps.2023.105257 - Coupling Model of Electromigration and Experimental Verification – Part II: Impact of Thermomigration
Zhen Cui; Xuejun Fan; Yaqian Zhang; Sten Vollebregt; Jiajie Fan; Guoqi Zhang;
Journal of the Mechanics and Physics of Solids,
Volume 174, pp. 105256, 2023. DOI: 10.1016/j.jmps.2023.105256 - Ultra-sensitive graphene membranes for microphone applications
Gabriele Baglioni; Roberto Pezone; Sten Vollebregt; Katarina Cvetanović Zobenica; Marko Spasenović; Dejan Todorovic; Hanqing Liu; Gerard Verbiest; Herre S.J. van der Zant; Peter Gerard Steeneken;
Nanoscale,
Volume 15, pp. 6343-6352, 2023. DOI: 10.1039/D2NR05147H - Microfabricated albedo insensitive sun position sensor system in silicon carbide with integrated 3D optics and CMOS electronics
Joost Romijn; Sten Vollebregt; Vincent G. de Bie; Luke M. Middelburg; Brahim El Mansouri; Henk W. van Zeijl; Alexander May; Tobias Erlbacher; Johan Leijtens; Guoqi Zhang; Pasqualina M. Sarro;
Sensors and Actuators A: Physical,
Volume 354, pp. 114268, 2023. DOI: 10.1016/j.sna.2023.114268 - The sensitivity enhancement of TiO2-based VOCs sensor decorated by gold at room temperature
Mostafa Shooshtari; Sten Vollebregt; Yas Vaseghi; Mahshid Rajati; Saeideh Pahlavan;
IOP Nanotechnology,
Volume 34, Issue 25, pp. 255501, 2023. DOI: 10.1088/1361-6528/acc6d7 - A Highly Linear Temperature Sensor Operating up to 600°C in a 4H-SiC CMOS Technology
Jiarui Mo; Jinglin Li; Yaqian Zhang; Joost Romijn; Alexander May; Tobias Erlbacher; Guoqi Zhang; Sten Vollebregt;
IEEE Electron Device Letters,
Volume 44, Issue 6, pp. 995-998, 2023. DOI: 10.1109/LED.2023.3268334 - Nanostructured Thermoelectric Films Synthesised by Spark Ablation and Their Oxidation Behaviour
Joost van Ginkel; Lisa Mitterhuber; Marijn Willem van de Putte; Mark Huijben; Sten Vollebregt; Guoqi Zhang;
Nanomaterials,
Volume 13, Issue 11, pp. 1778, 2023. DOI: 10.3390/nano13111778 - Copper Nanoparticle Sintering Enabled Hermetic Packaging With Fine Sealing Ring for MEMS Application
Dong Hu; Mustafeez Bashir Shah; Jiajie Fan; Sten Vollebregt; Guoqi Zhang;
IEEE Transactions on Electron Devices,
Volume 70, Issue 11, pp. 5818-5823, 2023. DOI: 10.1109/TED.2023.3312066 - Quantifying stress distribution in ultra-large graphene drums through mode shape imaging
Ali Sarafraz; Hanqing Liu; Katarina Cvetanović; Marko Spasenović; Sten Vollebregt; Tomas Manzaneque Garcia; Peter G. Steeneken; Farbod Alijani;
arXiv,
2023. DOI: 10.48550/arXiv.2311.00443 - Design and Characterization of a Data Converter in
a SiC CMOS Technology for Harsh Environment
Sensing Applications
Yunfan Niu; Jiarui Mo; Alexander May; Mathias Rommel; Chiara Rossi; Joost Romijn; Guoqi Zhang; Sten Vollebregt;
In Proc. of IEEE Sensors,
2023. DOI: 10.1109/SENSORS56945.2023.10325061 - High-performance wafer-scale transfer-free graphene microphones
Roberto Pezone; Gabriele Baglioni; Pasqualina M. Sarro; Peter G. Steeneken; Sten Vollebregt;
In IEEE 36th Intl. Conf. on Micro Electro Mechanical Systems (MEMS2023),
2023. DOI: 10.1109/MEMS49605.2023.10052360 - Silicon carbide reinforced vertically aligned carbon nanotube composite for harsh environment MEMS
Jiarui Mo; Shreyas Shankar; Guoqi Zhang; Sten Vollebregt;
In IEEE 36th Intl. Conf. on Micro Electro Mechanical Systems (MEMS2023),
2023. DOI: 10.1109/MEMS49605.2023.10052162 - Electromigration-induced local dewetting in Cu films
Yaqian Zhang; Jiarui Mo; Zhen Cui; Sten Vollebregt; GuoQi Zhang;
In Proc. of the IEEE International Interconnect Technology Conference,
2023. DOI: 10.1109/IITC/MAM57687.2023.10154761 - Reliability Analysis on Ag and Cu Nanoparticles Sintered Discrete Power Devices with Various Frontside and Backside Interconnects
Dong Hu; Xu Liu; Sten Vollebregt; Jiajie Fan; Guoqi Zhang; Ali Roshanghias; Xing Liu; Thomas Basler; Emiel De Bruin;
In Proc. of Electronic Components and Technology Conference (ECTC),
2023. - MOSFET-based And P-N Diode Based Temperature Sensors In A 4H-sSiC CMOS Technology
Jiarui Mo; Jinglin Li; Yaqian Zhang; Alexander May; Tobias Erlbacher; Guoqi Zhang; Sten Vollebregt;
In 22nd International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS 2023),
2023.
document - Wafer-scale Transfer-free Graphene MEMS Condenser Microphones
Roberto Pezone; Gabriele Baglioni; Leonardo di Paola; Pasqualina M. Sarro; Peter G. Steeneken; Sten Vollebregt;
In 22nd International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS 2023),
2023.
document - Graphene gas sensors monolithically integrated on microhotplates by using a transfer-free approach
Leandro Sacco; Sten Vollebregt;
In Graphene Week,
2023.
document - High aspect-ratio multi-layer graphene MEMS condenser microphones
Roberto Pezone; Gabriele Baglioni; Pasqualina M. Sarro; Peter G. Steeneken; Sten Vollebregt;
In Graphene Week,
2023.
document - Time Dependent Dielectric Breakdown of 4H-SiC MOSFETs in CMOS technology
Yaqian Zhang; Jiarui Mo; Sten Vollebregt; GuoQi Zhang;
In 24th International Conference on Electronic Packaging Technology (ICEPT),
2023. DOI: 10.1109/ICEPT59018.2023.10492218 - Multilayer CVD graphene electrodes using a transfer-free process for the next generation of optically transparent and MRI-compatible neural interfaces
Nasim Bakhshaee Babaroud; Merlin Palmar; Andrada Iulia Velea; Chiara Coletti; Sebastian Weingärtner; Frans Vos; Wouter A. Serdijn; Sten Vollebregt; Vasiliki Giagka;
Nature Microsystems & Nanoengineering,
Volume 8, pp. 107, 2022. (featured article). DOI: 10.1038/s41378-022-00430-x - Technology Development for MEMS: A Tutorial
P. J. French; G. J. Krijnen; S. Vollebregt; M. Mastrangeli;
IEEE Sensors Journal,
Volume 22, Issue 11, pp. 10106-10125, June 2022. DOI: doi: 10.1109/JSEN.2021.3104715
Abstract: ...
Silicon sensors date back to before 1960 with early Hall and piezoresistive devices. These used simple processing that was part of the early integrated circuit (IC) industry. As the IC industry developed, silicon sensors could benefit from the technological advances. As silicon sensors advanced, there came the need for new technologies specifically for microsystems. This led to a range of 3-D structures using micromachining and enabled the development of both sensors and actuators. The integration of sensors with electronics on a single chip also presented new challenges to ensure that both sensor and electronics would function correctly at the end of the processing. In recent years many new technologies and new materials were introduced to enhance the functionality of microsystems. Some sensors are still based on silicon, but others introduce new materials such as carbon nanotubes and graphene. Technologies that have been used in other applications for many years are now integral part of the microsystem technology portfolio. These include screen printing and inkjet printing. Moving more into the third dimension, 3-D printing presents many new opportunities to fabricate novel structures on a silicon substrate. This tutorial focuses on the additional technologies which have been developed to supplement standard IC processes to create MEMS structures. - Integrated Digital and Analog Circuit Blocks in a Scalable Silicon Carbide CMOS Technology
Joost Romijn; Sten Vollebregt; Luke M. Middelburg; Brahim El Mansouri; Henk W. van Zeijl; Alexander May; Tobias Erlbacher; Guoqi Zhang; Pasqualina M. Sarro;
IEEE Transactions on Electron Devices,
Volume 69, Issue 1, pp. 4-10, 2022. DOI: 10.1109/TED.2021.3125279 - Technology Development for MEMS: A Tutorial
Paddy J French; Gijs JM Krijnen; Sten Vollebregt; Massimo Mastrangeli;
IEEE Sensors Journal,
Volume 22, Issue 11, 2022. DOI: 10.1109/JSEN.2021.3104715 - Mass and density determination of porous nanoparticle films using a quartz crystal microbalance
Hendrik Joost van Ginkel; Sten Vollebregt; GuoQi Zhang; Andreas Schmidt-Ott;
IOP Nanotechnology,
Volume 33, Issue 48, 2022. DOI: 10.1088/1361-6528/ac7811 - Characterization of low-loss hydrogenated amorphous silicon films for superconducting resonators
Bruno T. Buijtendorp; Juan Bueno; David J. Thoen; Vignesh Murugesan; Paolo M. Sberna; Jochem J. A. Baselmans; Sten Vollebregt; Akira Endo;
J. of Astronomical Telescopes, Instruments, and Systems,
Volume 8, Issue 2, pp. 028006, 2022. DOI: 10.1117/1.JATIS.8.2.028006 - Effects of Temperature and Grain Size on Diffusivity of Aluminium: Electromigration Experiment and Molecular Dynamic Simulation
Zhen Cui; Yaqian Zhang; Dong Hu; Sten Vollebregt; Jiajie Fan, Xuejun Fan; Guoqi Zhang;
Journal of Physics: Condensed Matter,
Volume 34, pp. 175401, 2022. DOI: 10.1088/1361-648X/ac4b7f - Enhancement of Room Temperature Ethanol Sensing by Optimizing the Density of Vertically Aligned Carbon Nanofibers Decorated with Gold Nanoparticles
Mostafa Shooshtari; Leandro Nicolas Sacco; Joost Van Ginkel; Sten Vollebregt; Alireza Salehi;
MDPI Materials,
Volume 15, Issue 4, pp. 1383, 2022. DOI: 10.3390/ma15041383 - Sensitive Transfer-Free Wafer-Scale Graphene Microphones
Roberto Pezone; Gabriele Baglioni; Pasqualina M. Sarro; Peter G. Steeneken; Sten Vollebregt;
ACS Applied Materials & Interfaces,
Volume 14, Issue 18, pp. 21705-21712, 2022. DOI: 10.1021/acsami.2c03305 - Direct Wafer-Scale CVD Graphene Growth under Platinum Thin-Films
Yelena Hagendoorn; Gregory Pandraud; Sten Vollebregt; Bruno Morana; Pasqualina M. Sarro; Peter G. Steeneken;
MDPI Materials,
Volume 15, Issue 10, pp. 3723, 2022.
document - Angle Sensitive Optical Sensor for Light Source Tracker Miniaturization
Joost Romijn; Secil Sanseven; Guoqi Zhang; Sten Vollebregt; Pasqualina M. Sarro;
IEEE Sensors Letters,
Volume 6, Issue 6, pp. 1-4, 2022. DOI: 10.1109/LSENS.2022.3175607 - Multilayer CVD graphene electrodes using a transfer-free process for the next generation of optically transparent and MRI-compatible neural interfaces
Nasim Bakhshaee; Merlin Palmar; Andrada Iulia Velea; Chiara Coletti; Sebastian Weingaertner; Frans Vos; Wouter A. Serdijn; Sten Vollebregt; Vasiliki Giagka;
Microsystems & Nanoengineering,
Volume 8, Issue 107, pp. 1-14, Sep 2022. DOI: 10.1038/s41378-022-00430-x
Abstract: ...
Multimodal platforms combining electrical neural recording and stimulation, optogenetics, optical imaging, and magnetic resonance (MRI) imaging are emerging as a promising platform to enhance the depth of characterization in neuroscientific research. Electrically conductive, optically transparent, and MRI-compatible electrodes can optimally combine all modalities. Graphene as a suitable electrode candidate material can be grown via chemical vapor deposition (CVD) processes and sandwiched between transparent biocompatible polymers. However, due to the high graphene growth temperature (≥ 900 °C) and the presence of polymers, fabrication is commonly based on a manual transfer process of pre-grown graphene sheets, which causes reliability issues. In this paper, we present CVD-based multilayer graphene electrodes fabricated using a wafer-scale transfer-free process for use in optically transparent and MRI-compatible neural interfaces. Our fabricated electrodes feature very low impedances which are comparable to those of noble metal electrodes of the same size and geometry. They also exhibit the highest charge storage capacity (CSC) reported to date among all previously fabricated CVD graphene electrodes. Our graphene electrodes did not reveal any photo-induced artifact during 10-Hz light pulse illumination. Additionally, we show here, for the first time, that CVD graphene electrodes do not cause any image artifact in a 3T MRI scanner. These results demonstrate that multilayer graphene electrodes are excellent candidates for the next generation of neural interfaces and can substitute the standard conventional metal electrodes. Our fabricated graphene electrodes enable multimodal neural recording, electrical and optogenetic stimulation, while allowing for optical imaging, as well as, artifact-free MRI studies.
document - Hydrogenated amorphous silicon carbide: A low-loss deposited dielectric for microwave to submillimeter-wave superconducting circuits
B. T. Buijtendorp; S. Vollebregt; K. Karatsu; D. J. Thoen; V. Murugesan; K. Kouwenhoven; S. Hähnle; J. J. A. Baselmans; A. Endo;
Physical Review Applied,
Volume 18, pp. 064003, 2022. DOI: 10.1103/PhysRevApplied.18.064003 - Integrated 64 pixel UV image sensor and readout in a silicon carbide CMOS technology
Joost Romijn; Sten Vollebregt; Luke M. Middelburg; Brahim El Mansouri; Henk W. van Zeijl; Alexander May; Tobias Erlbacher; Johan Leijtens; Guoqi Zhang; Pasqualina M. Sarro;
Nature Microsystems & Nanoengineering,
Volume 8, pp. 114, 2022. DOI: 10.1038/s41378-022-00446-3 - Hydrogenated Amorphous Silicon Carbide: A Low-loss Deposited Dielectric for Microwave to Submillimeter Wave Superconducting Circuits
Buijtendorp, B. T.; Vollebregt, S. ; Karatsu, K.; Thoen, D. J.; Murugesan, V.; Kouwenhoven, K.; Hähnle, S.; Baselmans, J. J. A.; Endo, A.;
Physical Review Applied,
Volume 18, Issue 6, pp. 064003, 2022. DOI: https://doi.org/10.1103/PhysRevApplied.18.064003 - Characterization of low-loss hydrogenated amorphous silicon films for superconducting resonators
Bruno T. Buijtendorp; Juan Bueno; David J. Thoen; Vignesh Murugesan; Paolo M. Sberna; Jochem J. A. Baselmans; Sten Vollebregt; Akira Endo;
Journal of Astronomical Telescopes, Instruments, and Systems,
Volume 8, Issue 2, pp. 028006, 2022. DOI: 10.1117/1.JATIS.8.2.028006 - Patterning of Fine-Features in Nanoporous Films Synthesized by Spark Ablation
Xinrui Ji; Joost van Ginkel; Dong Hu; Andreas Schmidt-Ott; Henk van Zeijl; Sten Vollebregt; GuoQi Zhang;
In Proc. IEEE Nano,
pp. 238-241, 2022. DOI: 10.1109/NANO54668.2022.9928705 - Visible Blind Quadrant Sun Position Sensor in a Silicon Carbide Technology
Joost Romijn; Sten Vollebregt; Alexander May; Tobias Erlbacher; Henk W. van Zeijl; Johan Leijtens; GuoQi Zhang; Pasqualina M. Sarro;
In 35th Intl. Conf. on Micro Electro Mechanical Systems (MEMS 2022),
2022. DOI: 10.1109/MEMS51670.2022.9699533 - Synthesis of Carbon Nanofibers (CNFs) by PECVD Using Ni Catalyst Printed by Spark Ablation
Leandro Sacco; Joost van Ginkel; Sten Vollebregt;
In Proc. IEEE Nano,
pp. 128-131, 2022. DOI: 10.1109/NANO54668.2022.9928632 - ZnO Nanoparticle Printing for UV Sensor Fabrication
Hendrik Joost van Ginkel; Mattia Orvietani; Joost Romijn; GuoQi Zhang; Sten Vollebregt;
In Proc. of IEEE Sensors,
2022. DOI: 10.1109/SENSORS52175.2022.9967053 - Humidity Sensor Based on Multi-Layer Graphene (MLG) Integrated Onto a Micro-Hotplate (MHP)
Leandro Sacco; Hanxing Meng; Sten Vollebregt;
In Proc. of IEEE Sensors,
2022. DOI: 10.1109/SENSORS52175.2022.9967039 - Transfer-free multi-layer graphene as a platform for NEMS/MEMS sensors
Sten Vollebregt;
In MNE-ES conference (plenary),
2022. - Transfer-free multi-layered graphene (MLG) on integrated microheaters: an attractive platform for gas sensing
Leandro Sacco; Hanxing Meng; Sten Vollebregt;
In MNE-ES conference,
2022. - Wafer-Scale Transfer-Free Sensitive Graphene Microphones
Roberto Pezone; G. Baglioni; P.M. Sarro; P.G. Steeneken; S. Vollebregt;
In Graphene Week,
2022.
document - Characterization of ultra-sensitive graphene membranes for microphone
applications
Gabriele Baglioni; Roberto Pezone; Sten Vollebregt; Katarina Cvetanović; Marko Spasenović; Dejan Todorović; Hanqing Liu; Gerard J. Verbiest; Herre S.J. van der Zant; Peter G. Steeneken;
In Graphene Week,
2022.
document - Low-loss a-SiC:H for superconducting microstrip lines for (sub-)millimeter astronomy
Bruno T. Buijtendorp; Akira Endo; Kenichi Karatsu; David Thoen; Vignesh Murugesan; Kevin Kouwenhoven; Sebastian Hähnle; Jochem J. A. Baselmans; Sten Vollebregt;
In Proc. SPIE PC12190, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy XI,
pp. PC121900W, 2022. DOI: 10.1117/12.2630107 - Multi-Layer Graphene Pirani Pressure Sensors
Romijn, Joost; Dolleman, Robin; Singh, Manvika; van der Zant, Herre; Steeneken, Peter; Sarro, Pasqualina; Vollebregt, Sten;
IOP Nanotechnology,
Volume 32, Issue 33, pp. 335501, 2021. DOI: 10.1088/1361-6528/abff8e - Effect of Temperature and Humidity on the Sensing Performance of TiO2 Nanowire-based Ethanol Vapor Sensors
Mostafa Shooshtari; Alireza Salehi; Sten Vollebregt;
IOP Nanotechnology,
Volume 32, Issue 32, pp. 325501, 2021. DOI: 10.1088/1361-6528/abfd54 - Surface-micromachined Silicon Carbide Pirani Gauges for Harsh Environments
Jiarui Mo; Luke Middelburg; Bruno Morana; H.W. Van Zeijl; Sten Vollebregt; GuoQi Zhang;
IEEE Sensors Letters,
Volume 21, Issue 2, pp. 1350-1358, 2021. DOI: 10.1109/JSEN.2020.3019711 - Monolithic Integration of a Smart Temperature Sensor on a Modular Silicon-based Organ-on-a-chip Device
Ronaldo Martins da Ponte; Nikolas Gaio; Henk van Zeijl; Sten Vollebregt; Paul Dijkstra; Ronald Dekker; Wouter A. Serdijn; Vasiliki Giagka;
Sensors and Actuators A: Physical,
Volume 317, pp. 112439, 2021. DOI: 10.1016/j.sna.2020.112439
document - Influence of defect density on the gas sensing properties of multi-layered graphene grown by chemical vapor deposition
Filiberto Ricciardella; Sten Vollebregt; Rita Tilmann; Oliver Hartwig; Cian Bartlam; Pasqualina M. Sarro; Hermann Sachdev; Georg S.Duesberg;
Carbon Trends,
Volume 3, pp. 100024, 2021.
document - Insights into the high-sulphur aging of sintered silver nanoparticles: An experimental and ReaxFF study
Dong Hu; Tijian Gu; Zhen Cui; Sten Vollebregt; Xuejun Fan; Guoqi Zhang; Jiajie Fan;
Corrosion Science,
pp. 109846, 2021. DOI: 10.1016/j.corsci.2021.109846 - Hydrogenated Amorphous Silicon Carbide: A Low-loss Deposited Dielectric for Microwave to Submillimeter Wave Superconducting Circuits
B. T. Buijtendorp; S. Vollebregt; K. Karatsu; D. J. Thoen; V. Murugesan; K. Kouwenhoven; S. Hähnle; J. J. A. Baselmans, A. Endo;
arXiv,
2021.
document - Room temperature ppt-level NO2 gas sensor based on SnOx/SnS nanostructures with rich oxygen vacancies
Hongyu Tang; Chenshan Gao; Huiru Yang; Leandro Nicolas Sacco; Robert Sokolovskij; Hongze Zheng; Huaiyu Ye; Sten Vollebregt; Hongyu Yu; Xuejun Fan; Guoqi Zhang;
2D Materials,
2021. DOI: 10.1088/2053-1583/ac13c1 - Transfer-free multi-layer graphene: a platform for NEMS/MEMS sensors
Sten Vollebregt;
In Graphene Conference,
2021. (invited). - Wafer-scale graphene: a transfer-free approach
Sten Vollebregt;
In Graphene Online,
2021. (invited).
document - Towards a Scalable Sun Position Sensor with Monolithic Integration of the 3d Optics for Miniaturized Satellite Attitude Control
J. Romijn; S. Vollebregt; H. W. van Zeijl; G. Zhang; J. Leijtens; P. M. Sarro;
In 2021 IEEE 34th International Conference on Micro Electro Mechanical Systems (MEMS),
pp. 642-645, Jan 2021. DOI: 10.1109/MEMS51782.2021.9375434 - Resistive and PTAT Temperature Sensors in a Silicon Carbide CMOS Technology
Joost Romijn; Luke M. Middelburg; Sten Vollebregt; Brahim El Mansouri; Henk W. van Zeijl; Alexander May; Tobias Erlbacher; Guoqi Zhang; and Pasqualina M. Sarro;
In Proc. of IEEE Sensors,
2021. - High step coverage interconnects by printed nanoparticles
Hendrik Joost van Ginkel; Joost Romijn; Sten Vollebregt; GuoQi Zhang;
In Proc. of the 23rd European Microelectronics and Packaging Conference & Exhibition (EMPC),
2021. - Low-loss dielectric for high frequency cryogenic applications
J.J.A. Baselmans; B.T. Buijtendorp; A. Endo; S. Vollebregt;
Patent, NL2024742B1; WO2021150101, 2021. - Monolithic Integration of a Smart Temperature Sensor on a Modular Silicon-based Organ-on-a-Chip Device
Martins da Ponte, Ronaldo; Nikolas Gaio; Henk van Zeijl; Sten Vollebregt; Paul Dijkstra; Ronald Dekker; Wouter A. Serdijn; Vasiliki Giagka;
Sensors and Actuators A: Physical,
Nov. 21 2020. ISSN 0924-4247.
Keywords: ...
Organs-on-a-chip; Smart temperature sensor; Time-mode domain signal processing; MEMS; CMOS Monolithic Integration; MEMS-Electronics co-fabrication.
Abstract: ...
One of the many applications of organ-on-a-chip (OOC) technology is the study of biological processes in human induced pluripotent stem cells (iPSCs) during pharmacological drug screening. It is of paramount importance to construct OOCs equipped with highly compact in situ sensors that can accurately monitor, in real time, the extracellular fluid environment and anticipate any vital physiological changes of the culture. In this paper, we report the co-fabrication of a CMOS smart sensor on the same substrate as our silicon-based OOC for real-time in situ temperature measurement of the cell culture. The proposed CMOS circuit is developed to provide the first monolithically integrated in situ smart temperature-sensing system on a micromachined silicon-based OOC device. Measurement results on wafer reveal a resolution of less than ±0.2 °C and a nonlinearity error of less than 0.05% across a temperature range from 30 °C to 40 °C. The sensor's time response is more than 10 times faster than the time constant of the convection-cooling mechanism found for a medium containing 0.4 ml of PBS solution. All in all, this work is the first step towards realising OOCs with seamless integrated CMOS-based sensors capable to measure, in real time, multiple physical quantities found in cell culture experiments. It is expected that the use of commercial foundry CMOS processes may enable OOCs with very large scale of multi-sensing integration and actuation in a closed-loop system manner.
document - Low-friction, wear-resistant, and electrically homogeneous multilayer graphene grown by chemical vapor deposition on molybdenum
Borislav Vasic; Uros Ralevic; Katarina Cvetanovic Zobenica; Milce Smiljanic; Rados Gajic; Marko Spasenovic; Sten Vollebregt;
Applied Surface Science,
Volume 509, pp. 144792, 2020. DOI: 10.1016/j.apsusc.2019.144792 - Infrared absorbance of vertically-aligned multi-walled CNT forest as a function of synthesis temperature and time
Amir Mirza Gheytaghia; Amir Ghaderi; Sten Vollebregt; Majid Ahmadic; Reinoud Wolffenbuttel; GuoQi Zhang;
Materials Research Bulletin,
2020. DOI: 10.1016/j.materresbull.2020.110821 - Toward a Self-Sensing Piezoresistive Pressure Sensor for all-SiC Monolithic Integration
L.M. Middelburg; H.W. van Zeijl; S. Vollebregt; B. Morana; GuoQi Zhang;
IEEE Sensors,
Volume 20, Issue 19, pp. 11265-11274, 2020. DOI: 10.1109/JSEN.2020.2998915 - Low-Humidity Sensing Properties of Multi-Layered Graphene Grown by Chemical Vapor Deposition
Filiberto Ricciardella; Sten Vollebregt; Tiziana Polichetti; Pasqualina M. Sarro; Georg S. Duesberg;
MDPI Sensors,
Volume 20, Issue 11, pp. 3174, 2020.
document - Wafer-scale transfer-free process of multi-layered graphene grown by chemical vapor deposition
Filiberto Ricciardella; Sten Vollebregt; Bart Boshuizen; F.J.K. Danzl; Ilkay Cesar; Pierpaolo Spinelli; Pasqualina Maria Sarro;
Material Research Express,
2020. DOI: 10.1088/2053-1591/ab771e - Vertically-Aligned Multi-Walled Carbon Nano Tube Pillars with Various Diameters under Compression: Pristine and NbTiN Coated
Amir Mirza Gheitaghy; René H. Poelma; Leandro Sacco; Sten Vollebregt; GuoQi Zhang;
MDPI Nanomaterials,
Volume 10, Issue 6, pp. 1189, 2020. DOI: 10.3390/nano10061189 - The influence of H2 and NH3 on catalyst nanoparticle formation and carbon nanotube growth
R. Pezone; S. Vollebregt; P.M. Sarro; Sandeep Unnikrishnan;
Carbon,
Volume 170, pp. 384-393, 2020.
document - Low power AlGaN/GaN MEMS pressure sensor for high vacuum application
Jianwen Sun; Dong Hu; Zewen Liu; Luke Middelburg; Sten Vollebregt; Pasqualina M. Sarro; Guoqi Zhang;
Sensors and Actuators A: Physical,
Volume 314, pp. 112217, 2020.
document - Effect of Humidity on Gas Sensing Performance of Carbon Nanotube Gas Sensors Operated at Room Temperature
Mostafa Shooshtari; Alireza Salehi; Sten Vollebregt;
IEEE Sensors,
2020.
document - Recent advances in 2D/nanostructured metal sulfide-based gas sensors: mechanisms, applications, and perspectives
Hongyu Tang; Leandro Sacco; Sten Vollebregt; Huaiyu Ye; Xuejun; Fan; GuoQi Zhang;
Journal of Materials Chemistry A,
Volume 8, pp. 24943-24976, 2020.
document - Soft, flexible and transparent graphene-based active spinal cord implants for optogenetic studies
A. Velea; S. Vollebregt; Vasiliki Giagka;
13th International Symposium on Flexible Organic Electronics (ISFOE20),
2020. Scientific Poster.
document - Functionalisation of Multi-Layer Graphene-Based Gas Sensor by Au Nanoparticles
Morelli, Laura; Ricciardella, Filiberto; Koole, Max; Persijn, Stefan; Vollebregt, Sten;
Proceedings,
Volume 56, Issue 1, pp. 1, Dec 2020. DOI: 10.3390/proceedings2020056001
document - Wafer-scale Graphene-based Soft Implant with Optogenetic Compatibility
A.I. Velea; S. Vollebregt; G.K. Wardhana; V. Giagka;
In Proc. IEEE Microelectromech. Syst. (MEMS) 2020,
Vancouver, Canada, IEEE, Jan. 2020.
document - Soft, flexible and transparent graphene-based active spinal cord implants for optogenetic studies
A. Velea; S. Vollebregt; V. Giagka;
In proc. 13th International Symposium on Flexible Organic Electronics (ISFOE20) 2020,
Thessaloniki, Greece, July 2020.
document - Characterization of low-loss hydrogenated amorphous silicon films for superconducting resonators
B.T. Buijtendorp; J. Bueno; D.J. Thoen; V. Murugesan P.M. Sberna; J.J.A. Baselmans; S. Vollebregt; A. Endo;
In Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X,
SPIE, International Society for Optics and Photonics, pp. 459 - 472, 2020. DOI: 10.1117/12.2562233 - Functionalization of multi-layer graphene-based gas sensor by Au nanoparticles
Laura Morelli; Filiberto Ricciardelli; Max Koole; Stefan Persijn; Sten Vollebregt;
In Proc. of NanoFIS,
2020. - 3D-impaction printing of porous layers
van Ginkel, H. J.; Roels, P.; Boeije, M. F. J.; Pfeiffer, T. V.; Vollebregt, S.; GuoQi Zhang; Schmidt-Ott, A.,;
In European Aerosol Conference,
2020. - Wafer-scale Graphene-based Soft Implant with Optogenetic Compatibility
Andrade Velea; Sten Vollebregt; Gandhika Wardhana; Vasso Giagka;
In IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS 2020),
2020. - Characterization of low-loss hydrogenated amorphous silicon films for superconducting resonators
B. T. Buijtendorp; J. Bueno; D. J. Thoen; V. Murugesan; P. M. Sberna; J. J. A. Baselmans; S. Vollebregt; A. Endo;
In Proc. SPIE 11453, Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy X,
2020.
document - Analysis of a calibration method for non-stationary CVD multi-layered graphene-based gas sensors
Filiberto Ricciardella; Tiziana Polichetti; Sten Vollebregt; Brigida Alfano; Ettore Massera; Lina Sarro;
IOP Nanotechnology,
Volume 30, pp. 385501-1-8, 2019. DOI: 10.1088/1361-6528/ab2aac
document - Growth of multi-layered graphene on molybdenum catalyst by solid phase reaction with amorphous carbon
Filiberto Ricciardella; Sten Vollebregt; Evgenia Kurganova; A.J.M. Giesbers; Majid Ahmadi; Lina Sarro;
2D Materials,
Volume 6, pp. 035012, 2019. DOI: 10.1088/2053-1583/ab1518 - Mass measurement of graphene using quartz crystal microbalances
Robin J Dolleman; Mick Hsu; Sten Vollebregt; John E Sader; Herre SJ van der Zant; Peter G Steeneken; Murali K Ghatkesar;
Applied Physics Letters,
Volume 115, Issue 5, pp. 053102, 2019. DOI: 10.1063/1.5111086
document - TOWARDS AN ACTIVE GRAPHENE-PDMS IMPLANT
Gandhika K Wardhana; Wouter A. Serdijn; Sten Vollebregt; Vasiliki Giagka;
In Book of Abstracts, 7th Dutch Biomedical Engineering Conf. (BME) 2019,
Jan. 24-25 2019.
document - Flexible, graphene-based active implant for spinal cord stimulation in rodents
A.I. Velea; S. Vollebregt; V. Giagka;
In Book of Abstracts, SAFE 2019,
Delft, the Netherlands, July 4-5 2019.
document - Towards a Microfabricated Flexible Graphene-Based Active Implant for Tissue Monitoring During Optogenetic Spinal Cord Stimulation
A.I. Velea; S. Vollebregt; V. Giagka;
In Book of Abstracts, IEEE Nanotech. Mater. Dev. Conf. (NMDC) 2019,
Stockholm, Sweden, IEEE, Oct. 2019.
Abstract: ...
Our aim is to develop a smart neural interface with transparent electrodes to allow for electrical monitoring of the site of interest during optogenetic stimulation of the spinal cord. In this work, we present the microfabrication process for the wafer-level development of such a compact, active, transparent and flexible implant. The transparent, passive array of electrodes and tracks have been developed using graphene, on top of which chips have been bonded using flip-chip bonding techniques. To provide high flexibility, soft encapsulation, using polydimethylsiloxane (PDMS) has been used. Preliminary measurements after the bonding process have shown resistance values in the range of kΩ for the combined tracks and ball-bonds.
document - Towards a Microfabricated Flexible Graphene-Based Active Implant for Tissue Monitoring During Optogenetic Spinal Cord Stimulation
A.I. Velea; S. Vollebregt; T. Hosman; A. Pak; V. Giagka;
In Proceedings IEEE Nanotechnology Materials and Devices Conference (NMDC) 2019,
Stockholm, Sweden, Oct. 2019.
Abstract: ...
This work aims to develop a smart neural interface with transparent electrodes to allow for electrical monitoring of the site of interest during optogenetic stimulation of the spinal cord. In this paper, a microfabrication process for the wafer-level development of such a compact, active, transparent and flexible implant is presented. Graphene has been employed to form the transparent array of electrodes and tracks, on top of which chips have been bonded using flip-chip bonding techniques. To provide high flexibility, soft encapsulation, using polydimethylsiloxane (PDMS) has been used. Making use of the "Flex-to-Rigid" (F2R) technique, cm-size graphene-on-PDMS structures have been suspended and characterized using Raman spectroscopy to qualitatively evaluate the graphene layer, together with 2-point measurements to ensure the conductivity of the structure. In parallel, flip-chip bonding processes of chips on graphene structures were employed and the 2-point electrical measurement results have shown resistance values in the range of kΩ for the combined tracks and ball-bonds.
document - Towards an Active Graphene-PDMS Implant
Wardhana, G. K.; Serdijn, W.; Vollebregt, S.; Giagka, V.;
In Abstract from 7th Dutch Bio-Medical Engineering Conference,
2019.
document - Compressive response of pristine and superconductor coated MWCNT pillars
A. M. Gheytaghi; S. Vollebregt; R.H. Poelma; H. W. Zeijl; GuoQi Zhang;
In IEEE MEMS,
2019. - Wafer-scale integration of CVD graphene on CMOS devices using a transfer-free approach
Sten Vollebregt; Joost Romijn; Henk W. van Zeijl; Pasqualina M. Sarro;
In Graphene Week,
2019. - Free-standing, Transfer-free Graphene-based Differential Pressure Sensors
R. Ramesha; S. Vollebregt; P.M. Sarro;
In SAFE/ProRISC,
2019. - Transfer-free Graphene-based Differential Pressure Sensor
Raghutham Ramesha; Sten Vollebregt; Lina Sarro;
In Proc. IEEE NMDC,
2019. - Towards a Microfabricated Flexible Graphene-Based Active Implant for Tissue Monitoring During Optogenetic Spinal Cord Stimulation
Andrada Iulia Velea; Sten Vollebregt; Tim Hosman; Anna Pak; Vasiliki Giagka;
In Proc. IEEE NMDC,
2019. - Flexible, graphene-based acive implant for spinal cord stimulation in rodents
Andrada Velea; Sten Vollebregt; Vasiliki Giagka;
In SAFE/ProRISC,
2019. - A wafer-scale process for the monolithic integration of CVD graphene and CMOS logic for smart MEMS/NEMS sensors
Joost Romijn; Sten Vollebregt; Henk W. van Zeijl; Pasqualina M. Sarro;
In IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS). Piscataway: IEEE,
2019. DOI: 10.1109/MEMSYS.2019.8870741 - Graphene pellicle lithographic apparatus
Evgenia Kurganova; Jos Giesbers; Maria Peter; Maxim Naselevich; Arnoud Notenboom; Alexander Klein; Pieter-Jan van Zwol; David Vles; Pim Voorthuijzen; Sten Vollebregt;
Patent, WO2019170356, 2019. - Full wafer transfer-free graphene
Filiberto Ricciardella; Sten Vollebregt; Lina Sarro;
Patent, WO2019125140; NL2020111, 2019. - Grafeen: een zoektocht naar de toepassing
Sten Vollebregt; Jos Giesbers; Johan Klootwijk;
Nederlands Tijdschrift voor Natuurkunde,
pp. 16-20, September 2018. - Carbon Nanotube Array: Scaffolding Material for Opto, Electro, Thermo, and Mechanical Systems
Amir M. Gheytaghi; H. van Zeijl; S. Vollebregt; R.H. Poelma; C. Silvestri; R. Ishihara; G. Q. Zhang; P. M. Sarro;
Innovative Materials,
Volume 3, pp. 22-25, 2018. - Effects of Conformal Nanoscale Coatings on Thermal Performance of Vertically Aligned Carbon Nanotubes
Cinzia Silvestri; Michele Riccio; René H. Poelma; Aleksandar Jovic; Bruno Morana; Sten Vollebregt; Andrea Irace; GuoQi Zhang; Pasqualina M. Sarro;
Small,
Volume 14, Issue 20, pp. 1800614, 2018. DOI: 10.1002/smll.201800614 - A transfer-free approach to wafer-scale graphene deposited by chemical vapour deposition
Sten Vollebregt; Filiberto Ricciardella; Joost Romijn; Manvika Singh; Shengtai Shi; Lina Sarro;
In Graphene Conference,
2018. (invited).
document - Making large free-standing multi-layer graphene/graphitic membranes
Evgenia Kurganova; A.J.M. Giesbers; Sten Vollebregt; Arnoud Notenboom; David Vles; Maxim Nasalevich; Peter van Zwol;
In Graphene Conference,
2018. - A Miniaturized Low Power Pirani Pressure Sensor Based on Suspended Graphene
Joost Romijn; Sten Vollebregt; Robin J. Dolleman; Manvika Singh; Herre S.J. van der Zant; Peter G. Steeneken; Pasqualina M. Sarro;
In Proceedings of IEEE NEMS,
2018. - Wafer-scale CVD graphene integration: a transfer-free approach
Sten Vollebregt;
In GrapChina,
2018. (invited). - Wafer Level Through-polymer Optical Vias (TPOV) Enabling High Throughput of Optical Windows Manufacturing
Z. Huang; R.H. Poelma; S. Vollebregt; M.H. Koelink; E. Boschman; R. Kropf; M. Gallouch; GuoQi Zhang;
In IEEE Electronics System-Integration Technology Conference (ESTC),
pp. 1-5, 2018. - Effect of droplet shrinking on surface acoustic wave response in microfluidic applications
Thu Hang Bui; Van Nguyen; Sten Vollebregt; Bruno Morana; Henk van Zeijl; Trinh Chu Duc; P.M. Sarro;
Applied Surface Science,
Volume 426, pp. 253-261, 2017.
document - Effects of Graphene Monolayer Coating on the Optical Performance of Remote Phosphors
Maryam Yazdan Mehr; S. Vollebregt; W. D. van Driel; GuoQi Zhang;
Journal of Electronic Materials,
Volume 46, Issue 10, pp. 5866--5872, 2017. DOI: 10.1007/s11664-017-5592-8
Keywords: ...
graphene, Light-emitting diode, reliability, remote phosphor. - Effects of graphene defects on gas sensing properties towards NO2 detection
Filiberto Ricciardella; Sten Vollebregt; Tiziana Polichetti; Mario Miscuglio; Brigida Alfano; Maria L. Miglietta; Ettore Massera; Girolamo Di Francia; Pasqualina M. Sarro;
Nanoscale,
Volume 9, pp. 6085-6093, 2017.
document - CVD transfer-free graphene for sensing applications
Chiara Schiattarella; Sten Vollebregt; Tiziana Polichetti; Brigida Alfano; Ettore Massera; Maria Lucia Miglietta; Girolamo Di Francia; Pasqualina Maria Sarro;
Beilstein Journal of Nanotechnology,
Volume 8, pp. 1015-1022, 2017.
document - Carbon Nanotubes as Vertical Interconnects for 3D Integrated Circuits
Sten Vollebregt; Ryoichi Ishihara;
In Carbon Nanotubes for Interconnects,
Springer International Publishing, 2017.
document - A transfer-free wafer-scale method for the fabrication of suspended graphene beams for squeeze-film pressure sensors
S. Vollebregt; R.J. Dolleman; H.S.J. van der Zant; P.G. Steeneken; P.M. Sarro;
In Graphene Week,
2017. - An Innovative Approach to Overcome Saturation and Recovery Issues of CVD graphene-Based Gas Sensors
F. Ricciardella; S. Vollebregt; T. Polichetti; B. Alfano; E. Massera; P. M. Sarro;
In Proceedings of IEEE Sensors Conference,
pp. 1224-1226, 2017. - Wafer-scale measurements of the specific contact resistance between different metals and mono- and multi-layer graphene
S. Vollebregt; M. Singh; D.J. Wehenkel; R. van Rijn; P.M. Sarro;
In Proc. of the 43rd international conference on Micro and Nanoengineering (MNE),
pp. 152, 2017. - Low Temperature CVD Grown Graphene for Highly Selective Gas Sensors Working under Ambient Conditions
Filiberto Ricciardella; Sten Vollebregt; Tiziana Polichetti; Brigida Alfano; Ettore Massera; Pasqualina M. Sarro;
In Proceedings of Eurosensors 2017,
pp. 445, 2017.
document - High sensitive CVD graphene-based gas sensors operating under environmental conditions
Filiberto Ricciardella; Sten Vollebregt; Tiziana Polichetti; Brigida Alfano; Ettore Massera; Pasqualina M. Sarro;
In Graphene Conference,
2017. - Horizontally aligned carbon nanotube scaffolds for freestanding structures with enhanced conductivity
Cinzia Silvestri; Federico Marciano; Bruno Morana; Violeta Podranovic; Sten Vollebregt; GuoQi Zhang; Pasqualina M Sarro;
In Micro Electro Mechanical Systems (MEMS), 2017 IEEE 30th International Conference on,
pp. 266-269, 2017. - Suspended graphene beams with tunable gap for squeeze-film pressure sensing
S. Vollebregt; R.J. Dolleman; H.S.J. van der Zant; P.G. Steeneken; P.M. Sarro;
In Proc.of Transducers 2017, the 19th International Conference on Solid-state Sensors, Actuators, and Microsystems,
pp. 770-773, 2017. - Fabrication and characterization of an Upside-down Carbon Nanotube (CNT) Microelectrode array (MEA)
Gaio, N.; Silvestri, C.; van Meer, B.; Vollebregt, S.; Mummery, C.; Dekker, R.;
IEEE Sensors Journal,
Volume 16, Issue 24, pp. 8685, 2016. - Thermal characterization of carbon nanotube foam using MEMS microhotplates and thermographic analysis
Cinzia Silvestri; Michele Riccio; Rene Poelma; Bruno Morana; Sten Vollebregt; Fabio Santagata; Andrea Irace; GuoQi Zhang; Pasqualina M. Sarro;
Nanoscale,
Volume 8, pp. 8266-8275, 2016.
document - Stretchable Binary Fresnel Lens for Focus Tuning
Xueming Li; Lei Wei; Ren� H. Poelma; Sten Vollebregt; Jia Wei; Hendrik Paul Urbach; Pasqualina M. Sarro; GuoQi Zhang;
Scientific Reports,
Volume 6, pp. 25348, 2016. - The growth of carbon nanotubes on electrically conductive ZrN support layers for through-silicon vias
Sten Vollebregt; Sourish Banerjee; Frans D. Tichelaar; Ryoichi Ishihara;
Microelectronic Engineering,
Volume 156, pp. 126-130, 2016.
document - The Direct Growth of Carbon Nanotubes as Vertical Interconnects in 3D Integrated Circuits
Sten Vollebregt; Ryoichi Ishihara;
Carbon,
Volume 96, pp. 332-338, 2016.
document - High sensitive gas sensors realized by a transfer-free process of CVD graphene
Filiberto Ricciardella; Sten Vollebregt; Tiziana Polichetti; Brigida Alfano; Ettore Massera; Lina Sarro;
In Proceedings of the IEEE Sensors conference,
2016. - A predefined wafer-scale CVD graphene deposition method requiring no transfer
Sten Vollebregt; Lina Sarro;
In Graphene Week,
2016. - A transfer-free wafer-scale CVD graphene fabrication process for MEMS/NEMS sensors
S. Vollebregt; B. Alfano; F. Ricciardella; A.J.M. Giesbers; Y. Grachova; H.W. van Zeijl; T. Polichetti; P.M. Sarro;
In Proc. of the 29th IEEE International Conference of Micro Electro Mechanical Systems,
pp. 17-20, 2016. - Fabrication of Low Temperature Carbon Nanotube Vertical Interconnects Compatible with Semiconductor Technology
S. Vollebregt; R. Ishihara;
Journal of Visual Experiments,
Volume 106, pp. e53260, 2015.
document - Impact of the atomic layer deposition precursors diffusion on solid-state carbon nanotube based supercapacitors performances
G Fiorentino; S Vollebregt; FD Tichelaar; R Ishihara; PM Sarro;
IOP Nanotechnology,
Volume 26, Issue 6, pp. 064002, 2015.
document - Doped Carbon Nanotubes for Interconnects
J. Robertson; S. Esconjauregui; L. D’Arsie; J. Yang; H. Sugime; G. Zhong; Y. Guo; S. Vollebregt; R. Ishihara; C. Cepek; G. Duesberg; T. Hallam;
In Extended Abstracts of the 2015 International Conference on Solid State Devices and Materials (SSDM),
2015. - Carbon nanotubes TSV grown on an electrically conductive ZrN support layer
Sten Vollebregt; Sourish Banerjee; Frans D. Tichelaar; Ryoichi Ishihara;
In IEEE International Interconnect Technology Conference,
pp. 281-283, 2015. - Molybdenum grown CVD graphene Schottky diodes
S. Vollebregt; F. Ricciardella; Y. Grachova; T. Polichetti; P.M. Sarro;
In Graphene Week,
2015. - Tunable binary fresnel lens based on stretchable PDMS/CNT compsite
Xueming Li; L. Wei; S. Vollebregt; R. Poelma; Y. Shen; Jia Wei; P. Urbach; P.M. Sarro; GuoQi Zhang;
In Transducers,
pp. 2041-2044, 2015. - Crystallinity variations over the length of vertically aligned carbon nanotubes grown by chemical vapour deposition
S. Vollebregt; P. Padmanabhan; C. Silvestri; P.M. Sarro;
In 41st Micro and Nano Engineering conference,
2015. - The Role of Edge Defects in Liquid Phase Exfoliated and Chemical Vapor Deposited Graphene for NO2 Detection
F Ricciardella; S Vollebregt; T Polichetti; B Alfano; PM Sarro; ML Miglietta; E Massera; G Di Francia;
In GraphITA,
2015. - Upside-down Carbon Nanotube (CNT) Micro-electrode Array (MEA)
N. Gaio; B. van Meer; C. Silvestri; Saeed Khoshfetrat Pakazad; S. Vollebregt; C.L. Mummery; R. Dekker;
In IEEE Sensors Conference,
2015. - Dominant thermal boundary resistance in multi-walled carbon nanotube bundles fabricated at low temperature
Vollebregt, Sten; Banerjee, Sourish; Chiaramonti, Ann N; Tichelaar, Frans D; Beenakker, Kees; Ishihara, Ryoichi;
Journal of Applied Physics,
Volume 116, Issue 2, pp. 023514, 2014. - Carbon nanotube vertical interconnects fabricated at temperatures as low as 350 �C
Vollebregt, Sten; Tichelaar, FD; Schellevis, H; Beenakker, CIM; Ishihara, R;
Carbon,
Volume 71, pp. 249--256, 2014. - Failure Analysis and Reliability of Low-Temperature-Grown Multi-Wall Carbon Nanotube Bundles Integrated as Vias in Monolithic Three-Dimensional Integrated Circuits
Chiaramonti, Ann N; Vollebregt, Sten; Sanders, Aric W; Ishihara, Ryoichi; Read, David T;
Microsc. Microanal,
Volume 20, pp. 1762-1763, 2014. - Tailoring the Mechanical Properties of High-Aspect-Ratio Carbon Nanotube Arrays using Amorphous Silicon Carbide Coatings
Poelma, RH; Morana, Bruno; Vollebregt, Sten; Schlangen, Erik; van Zeijl, HW; Fan, Xuejun; Zhang, GuoQi;
Advanced Functional Materials,
Volume 24, Issue 36, pp. 5737-5744, 2014.
document - Carbon Nanotube Vertical Interconnects: Prospects and Challenges
Vollebregt, S; Beenakker, CIM; Ishihara, R;
In Micro-and Nanoelectronics: Emerging Device Challenges and Solutions,
CRC Press, 2014. - High Quality Wafer-scale CVD Graphene on Molybdenum Thin Film for Sensing Application
Yelena Grachova; Sten Vollebregt; Andrea Leonardo Lacaita; Pasqualina M. Sarro;
In Procedia Engineering 87: EUROSENSORS 2014, the 28th European Conference on Solid-State Transducers,
pp. 1501-1504, 2014.
document - 3D solid-state supercapacitors obtained by ALD coating of high-density carbon nanotubes bundles
Fiorentino, Giuseppe; Vollebregt, Sten; Tichelaar, FD; Ishihara, Ryoichi; Sarro, Pasqualina M;
In Micro Electro Mechanical Systems (MEMS), 2014 IEEE 27th International Conference on,
IEEE, pp. 342--345, 2014. - CNT bundles growth on microhotplates for direct measurement of their thermal properties
C. Silvestri; B. Morana; G. Fiorentino; S. Vollebregt; G. Pandraud; F. Santagata; GuoQi Zhang; P.M. Sarro;
In 27th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2014),
San Francisco, USA, Jan. 2014.
document - Carbon Nanotubes as Vertical Interconnects in 3D Integrated Circuits
Sten Vollebregt;
PhD thesis, Delft University of Technology, 2014.
document - Size-Dependent Effects on the Temperature Coefficient of Resistance of Carbon Nanotube Vias
Vollebregt, Sten; Banerjee, Sourish; Beenakker, Kees; Ishihara, Ryoichi;
Electron Devices, IEEE Transactions on,
Volume 60, Issue 12, pp. 4085--4089, 2013. - Thermal conductivity of low temperature grown vertical carbon nanotube bundles measured using the three-ω method.
S. Vollebregt; S. Banerjee; C.I.M. Beenakker; R. Ishihara;
Applied Physics Letters,
Volume 102, Issue 19, pp. 1-4, 2013. - Towards the integration of carbon nanotubes as vias in monolithic three-dimensional integrated circuits
S. Vollebregt; Chiaramonti A.N.; J. van der Cingel; C.I.M. Beenakker; R. Ishihara;
Japanese Journal of Applied Physics. Part 1, Regular Papers Brief Communications & Review Papers,
Volume 52, Issue 1-5, 2013. - Integrating low temperature aligned carbon nanotubes as vertical interconnects in Si technology
Sten Vollebregt; Ryoichi Ishihara; Jaber J. Derakhshandehohan van der Cingel; Hugo Schellevis; C.I.M. Beenakker;
In Nanoelectronic Device Applications Handbook,
Taylor and Francis, 2013. - Carbon Nanotubes as Interconnects in Integrated Circuits
Vollebregt, S; Ishihara, R; Beenakker, CIM;
In Dekker Encyclopedia of Nanoscience and Nanotechnology, Second Edition,
Taylor and Francis, 2013. - Carbon nanotube vias fabricated at back-end of line compatible temperature using a novel CoAl catalyst
S. Vollebregt; H. Schellevis; C.I.M. Beenakker; R. Ishihara;
In S. Ogawa (Ed.), IEEE International Interconnect Technology Conference-technical papers,
Kyoto, Japan, Jun. 2013. - Carbon Nanotube based heat-sink for solid state lighting
F. Santagata; G. Almanno; S. Vollebregt; C Silvestri; GuoQi Zhang; P.M. Sarro;
In 8th IEEE Int. Conf. Nano/Micro Engineered and Molecular Systems (NEMS),
pp. 1214-1217, Apr 2013. DOI 10.1109/NEMS.2013.6559937. - Influence of the growth temperature on the first and second-order Raman band ratios and widths of carbon nanotubes and fibers
S. Vollebregt; R. Ishihara; F.D. Tichelaar; Y. Hou; C.I.M. Beenakker;
Carbon,
Volume 50, Issue 10, pp. 3542-3554, Aug. 2012. DOI 10.1016/j.carbon.2012.03.026. - Integrating carbon nanotubes as vias in a monolithic 3DIC process
S. Vollebregt; R. Ishihara; A.N. Chiaramonti; J. van der Cingel; C.I.M. Beenakker;
In Proc. International Conference on Solid State Devices and Materials (SSDM 2012),
Kyoto, Japan, pp. 1170-1171, Sep 2012. - Electrical characterization of carbon nanotube vertical interconnects with different lengths and widths
S. Vollebregt; R. Ishihara; F.D. Tichelaar; J. van der Cingel; C.I.M. Beenakker;
In IEEE International Interconnect Technology Conference (IITC 2012),
San Jose, CA, USA, pp. 1-3, Jun. 2012. DOI 10.1109/IITC.2012.6251578. - Low-temperature bottom-up integration of carbon nanotubes for vertical interconnects in monolithic 3D integrated circuits
S. Vollebregt; R. Ishihara; J. van der Cingel; C.I.M. Beenakker;
In 3rd IEEE International 3D Systems Integration Conference (3DIC 2011),
Osaka, Japan, Jan. 2012. DOI 10.1109/3DIC.2012.6262989. - Multilayer conformal coating of highly dense Multi-Walled Carbon Nanotubes bundles
G. Fiorentino; S. Vollebregt; R. Ishihara; P.M. Sarro;
In 2012 12th IEEE Conference on Nanotechnology (IEEE-NANO),
Birmingham, UK, Aug. 2012. ISBN 978-1-4673-2198-3; DOI 10.1109/NANO.2012.6322054. - Contact resistance of low-temperature carbon nanotube vertical interconnects
S. Vollebregt; A.N. Chiaramonti; R. Ishihara; H. Schellevis; C.I.M. Beenakker;
In K. Jiang (Ed.), 2012 12th IEEE Conference on Nanotechnology (IEEE-NANO),
Birmingham, UK, Aug. 2012. ISBN 978-1-4673-2198-3; DOI 10.1109/NANO.2012.6321985. - Electrical characterisation of low temperature aligned carbon nanotubes for vertical interconnects
S. Vollebregt; R. Ishihara; J. van der Cingel; H. Schellevis; C.I.M. Beenakker;
In Proc. ICT.OPEN: Micro technology and micro devices (SAFE 2011),
Veldhoven, The Netherlands, Nov. 2011. - Use of multi-wall carbon nanotubes as an absorber in a thermal detector
H. Wu; S. Vollebregt; A. Emadi; G. de Graaf; R. R. IshiharaF. Wolffenbuttel;
In C. Tsamis; G. Kaltas (Ed.), Proc. Eurosensors XXV,
Athens, Greece, Procedia Engineering, pp. 523-526, Sep. 2011. DOI 10.1016/j.proeng.2011.12.130. - Integrating low temperature aligned carbon nanotubes as vertical interconnects in Si technology
S. Vollebregt; R. Ishihara; J. J. Derakhshandeh. van der Cingel; H. Schellevis; C.I.M. Beenakker;
In Proc. 11th IEEE International Conference on Nanotechnology (NANO 2011),
Portland, OR, pp. 985-990, Aug. 2011. - Patterned aligned carbon nanotubes for vertical interconnects in 3D integrated TFT circuits
S. Vollebregt; R. Ishihara; J. J. Derakhshandeh. van der Cingel; W.H.A. Wien; C.I.M. Beenakker;
In 7th International Thin-Film Transistor Conference,
Cambridge, United Kingdom, Mar. 2011. - Use of multi-wall carbon nanotubes as an absorber in a thermal detector
H. Wu; S. Vollebregt; A. Emadi; G. de Graaf; R. Ishihara; R.F. Wolffenbuttel;
In C Tsamis; G Kaltas (Ed.), 25th Eurosensors Conference,
Elsevier, pp. 523-526, 2011. - Growth of high density aligned carbon nanotubes using palladium as catalyst
S. Vollebregt; J. Derakhshandeh; R. Ishihara; M. Y. Wu; C. I. M. Beenakker;
Journal of Electronic Materials,
Volume 39, Issue 4, pp. 371-375, 2010. - Patterned growth of carbon nanotubes for vertical interconnect in 3D integrated circuits
S. Vollebregt; R. Ishihara; J. Derakhshandeh; W. Wien; J. van der Cingel; C.E.M. Beenakker;
In Proc. of SAFE 2010,
pp. 184-187, 2010. - Investigating Low Temperature High Density Aligned Carbon Nanotube and Nanofilament Growth using Palladium as Catalyst
S. Vollebregt; J. Derakhshandeh; M.Y. Wu; R. Ishihara; C.I.M. Beenakker;
In SAFE 2009,
STW, pp. 125-128, 2009. - Growth of high density aligned carbon nanotubes using palladium as catalyst
S. Vollebregt; J. Derakhshandeh; R. Ishihara; C.I.M. Beenakker;
In Proceedings of Electronic Material conference 2009,
USA, 2009.