Bahman Yousefzadeh

Publications

  1. A BJT-Based Temperature-to-Digital Converter With a ±0.25 °C 3 $\sigma$ -Inaccuracy From −40 °C to +180 °C Using Heater-Assisted Voltage Calibration
    Yousefzadeh, Bahman; Makinwa, Kofi A. A.;
    IEEE Journal of Solid-State Circuits,
    Volume 55, Issue 2, pp. 369-377, 2020. DOI: 10.1109/JSSC.2019.2953834

  2. Heater-Assisted Bandgap trimming of BJT-based Temperature-to-Digital converters
    B. Yousefzadeh; K. Souri; K.A.A. Makinwa;
    Patent, 10605676, 2020.

  3. Heater-assisted voltage calibration of digital temperature sensors
    B. Yousefzadeh; K. Souri; K. A. A. Makinwa;
    Patent, US15422687, 2018.

  4. A BJT-based Temperature-to-Digital Converter with ±60mK (3σ) Inaccuracy from −55°C to +125°C in 0.16μm Standard CMOS
    B. Yousefzadeh; S.H. Shalmany; K. Makinwa;
    IEEE Journal of Solid-State Circuits,
    Volume 52, Issue 4, pp. 1044-1052, 4 2017. DOI: 10.1109/JSSC.2016.2638464

  5. A BJT-based Temperature-to-Digital Converter with ±60mK (3σ) Inaccuracy from −55°C to +125°C in 0.16μm Standard CMOS
    B. Yousefzadeh; S.H. Shalmany; K. Makinwa;
    IEEE Journal of Solid-State Circuits,
    Volume 52, Issue 4, pp. 1044-1052, 4 2017. DOI: 10.1109/JSSC.2016.2638464

  6. A BJT-Based Temperature Sensor with a Packaging-Robust Inaccuracy of ±0.3°C (3σ) from -55°C to +125°C After Heater-Assisted Voltage Calibration
    B. Yousefzadeh; K.A.A. Makinwa;
    In IEEE International Solid-State Circuits Conference (ISSCC),
    February 2017. DOI: 10.1109/ISSCC.2017.7870311

  7. A compact sensor readout circuit with temperature, capacitance and voltage sensing functionalities
    B. Yousefzadeh; W. Wu; B. Buter; K. Makinwa; M. Pertijs;
    In NXP Low-Power Design Conference,
    NXP, June 2017.
    Abstract: ... This paper presents an area- and energy-efficient sensor readout circuit, which can precisely digitize temperature, capacitance and voltage. The three modes use only on-chip references and employ a shared zoom ADC based on SAR and ΔΣ conversion to save die area. Measurements on 24 samples from a single wafer show a temperature inaccuracy of ±0.2 °C (3σ) over the military temperature range (-55°C to 125°C). The voltage sensing shows an inaccuracy of ±0.5\%. The sensor also offers 18.7-ENOB capacitance-to-digital conversion, which handles up to 3.8 pF capacitance with a 0.76 pJ/conv.-step energy-efficiency FoM. It occupies 0.33 mm² in a 0.16 μm CMOS process and draws 4.6 μA current from a 1.8 V supply.

  8. A Compact Sensor Readout Circuit with Combined Temperature, Capacitance and Voltage Sensing Functionality
    B. Yousefzadeh; W. Wu; B. Buter; K. A. A. Makinwa; M. Pertijs;
    In Dig. Techn. Paper IEEE Symposium on VLSI Circuits (VLSI),
    IEEE, pp. 1‒2, June 2017. DOI: 10.23919/VLSIC.2017.8008555
    Abstract: ... This paper presents an area- and energy-efficient sensor readout circuit, which can precisely digitize temperature, capacitance and voltage. The three modes use only on-chip references and employ a shared zoom ADC based on SAR and ΔΣ conversion to save die area. Measurements on 24 samples from a single wafer show a temperature inaccuracy of ±0.2 °C (3σ) over the military temperature range (-55°C to 125°C). The voltage sensing shows an inaccuracy of ±0.5\%. The sensor also offers 18.7-ENOB capacitance-to-digital conversion, which handles up to 3.8 pF capacitance with a 0.76 pJ/conv.-step energy-efficiency FoM. It occupies 0.33 mm² in a 0.16 μm CMOS process and draws 4.6 μA current from a 1.8 V supply.

  9. A Compact Sensor Readout Circuit with Combined Temperature, Capacitance and Voltage Sensing Functionality
    B. Yousefzadeh; W. Wu; B. Buter; K. A. A. Makinwa; M. Pertijs;
    In Dig. Techn. Paper IEEE Symposium on VLSI Circuits (VLSI),
    IEEE, pp. 1‒2, June 2017. DOI: 10.23919/VLSIC.2017.8008555
    Abstract: ... This paper presents an area- and energy-efficient sensor readout circuit, which can precisely digitize temperature, capacitance and voltage. The three modes use only on-chip references and employ a shared zoom ADC based on SAR and ΔΣ conversion to save die area. Measurements on 24 samples from a single wafer show a temperature inaccuracy of ±0.2 °C (3σ) over the military temperature range (-55°C to 125°C). The voltage sensing shows an inaccuracy of ±0.5\%. The sensor also offers 18.7-ENOB capacitance-to-digital conversion, which handles up to 3.8 pF capacitance with a 0.76 pJ/conv.-step energy-efficiency FoM. It occupies 0.33 mm² in a 0.16 μm CMOS process and draws 4.6 μA current from a 1.8 V supply.

  10. A BJT-Based Temperature Sensor with a Packaging-Robust Inaccuracy of ±0.3°C (3σ) from -55°C to +125°C After Heater-Assisted Voltage Calibration
    B. Yousefzadeh; K.A.A. Makinwa;
    In IEEE International Solid-State Circuits Conference (ISSCC),
    pp. 162-163, February 2017. DOI: 10.1109/ISSCC.2017.7870311

  11. A BJT-based Temperature-to-Digital Converter with ±60mK (3σ) Inaccuracy from -70°C to 125°C in 160nm CMOS
    B. Yousefzadeh; S.H. Shalmany; K.A.A. Makinwa;
    In Dig. Techn. Paper IEEE Symposium on VLSI Circuits (VLSI),
    IEEE, pp. 1-2, June 2016. DOI: 10.1109/vlsic.2016.7573531

  12. A generic read-out circuit for resistive transducers
    B. Yousefzadeh; U. Sonmez; N. Mehta; J. Borremans; M. A. P. Pertijs; K. A. A. Makinwa;
    In Proc. IEEE International Workshop on Advances in Sensors and Interfaces (IWASI),
    IEEE, pp. 122‒125, June 2015. DOI: 10.1109/iwasi.2015.7184929

BibTeX support