NWO Demonstrator Grant awarded to Wouter Serdijn (Bioelectronics) and Cees-Jeroen Bes (in-Holland)

We recently developed a radically new technique, coined "additive companding", which solves important technological limitations of current neural recording systems. The technology has been patented, tested in the lab as proof of concept and is now ready to be developed further into a prototype. The foreseen prototype will allow for continuous and complete monitoring of neural activity, offers better performance and consumes drastically less volume (<400 µm x 400 µm x 400 µm) and energy (<<1 mW) than neural monitoring systems that currently exist or are under development. Clinically, the continuous and complete neural monitoring will offer new insights into the exact workings of nerve and brain tissue and it becomes possible to take the first step into the development of active medical implants that adjust themselves to the therapeutical needs of the patient without subjective measures. This, ultimately, enhances the health-related quality of life of patients with nerve and/or brain disorders and allows for a better treatment of a larger variety of nerve and brain disorders.


NWO-High Tech Systems and Materials proposal awarded to ECTM

Sun sensors, which are used to determine the satellite orientation towards the sun, are a vital part of the satellite attitude control. Current commercial available sun sensors are too large and costly to be integrated in the small satellites, e.g., nanosats. Due to the low costs of these satellites, they enable a wide range of applications which otherwise would not be possible or cost-effective. By developing a sun sensor that is fully integrated on a single substrate, the overall size of the sensor can be significantly reduced and costly extra calibration is avoided. By using SiC as material, we secure high performance and high reliability under harsh environment. In addition, the sensor will not be sensitive to reflections of the earth, as it uses the parts of the light spectrum absorbed by the atmosphere.

“Leopold B. Felsen Award for Excellence in Electrodynamics” for Dr. Giorgio Carlucci

Dr. Giorgio Carluccio (Tera Herz Sensing group) has been selected as the recipient of the EurAAP “Leopold B. Felsen Award for Excellence in Electrodynamics”

InForMed selected as success story by the EC

The EU-and industry-funded InForMed project has developed a new platform approach to the innovation chain for next-generation medical devices, giving a boost to European manufacturers, in particular SMEs. The project has established a facility that companies can use to manufacture and test prototype micro medical devices, ensuring European leadership in this vital technology-based sector.

TU Delft stands strong at the 2018 “Chip Olympics”

From February 11 to 15, the 65th International Solid-State Circuits Conference (ISSCC) will be held in San Francisco. ISSCC, the most prestigious and competitive scientific conference in the field of chip design and sensors, is informally known as the “Chip Olympics.” With ten papers, a forum presentation and a tutorial, TU Delft continues its significant yearly contribution to this prestigious conference.

Slimme contactlenzen en andere medische gadgets in je lijf

Onderzoekers van de technische universiteit van Ulsan in Zuid-Korea zeggen een lens te hebben ontwikkeld die bloedsuikerwaarden uitmeet. Over deze lens en andere bio-elektronische medicijnen praten we met Wouter Serdijn. Hij is hoogleraar bio-elektronica aan de TU Delft. Item op NPO Radio 1, Nieuwsweekend, zaterdag 27 januari 2018.